The Atlantic Geoscience Society (AGS)
La Société Géoscientifique de l’Atlantique

41st Colloquium and Annual Meeting

Special Sessions:

- Palaeontology in Atlantic Canada, a session in recognition of the work of Laing Ferguson
- Geoscience Education and Outreach: Past Successes and New Initiatives
- Hypabyssal Magmatic Hydrothermal Processes and Associated Mineralization

General Sessions:
Current Research in the Atlantic Provinces

30-31 January, 2015
Mount Allison University,
Sackville, New Brunswick

PROGRAM WITH ABSTRACTS
Welcome to the 41st Colloquium and Annual Meeting of the Atlantic Geoscience Society at Mount Allison University. We are especially pleased this year to pay tribute to long-time AGS member and MTA professor, Laing Ferguson (1935-2013) by way of a special session and display dedicated to his memory.

You have contributed a diverse and very full program, which we believe you will find stimulating, broadening, and the source of much discussion. It is one of the strengths of the geoscience community in the Atlantic region that it convenes annually at its Colloquium where not only do members have the opportunity to relate their own discoveries and understanding but also actively participate in those areas of our discipline where we are perhaps less current.

Be sure to take in the science on the posters during the multiple poster sessions, and the displays from sponsors. And don’t miss the after-banquet jam and open mike on Saturday night. For social media types, please consider sharing updates and tweets from the conference using this year’s hashtag #AtGeo15.

We hope you will be able to use the weekend to renew old acquaintances, make new ones, and further the aims of your Atlantic Geosciences Society.

The organizers: Melissa Grey, Tim Fedak, Rob Raeside, Elisabeth Kosters

We gratefully acknowledge sponsorship from the following companies and organizations:

Mount Allison University

ATLANTIC GEOSCIENCE SOCIETY
41st COLLOQUIUM AND ANNUAL GENERAL MEETING
30-31 January, 2015, Mt. Allison University, Sackville, New Brunswick

PROGRAM SUMMARY

Locations: see campus plan, inside back cover

Thursday, 29th January, 2015: AGS Travelling Speaker Series: Arsenic in Groundwater – Cliff Stanley, President, Atlantic Geoscience Society, Avard Dixon Hall, 7 p.m.

Friday, 30th January, 2015
2.00 – 3.00 p.m. AGS Publications Committee, Coastal Inn meeting room
3.00 – 5.00 p.m. AGS Council meeting, Coastal Inn meeting room
4.00 – 5.00 p.m. Poster set-up, Wallace McCain Student Centre
4.00 – 9.00 p.m. Registration, outside Tweedie Hall, (in McCain Student Centre)
5.00 – 6.30 p.m. Atlantic Geology editors meeting, Coastal Inn meeting room
5.00 – 7.00 p.m. Poster Session Tweedie Hall, (in McCain Student Centre)
7.00 – 9.00 p.m. Geoheritage Workshop, McCain Student Centre multipurpose room
7.00 – 9.00 p.m. Current Research in Atlantic Canada – Geomorphology and Sedimentary Geology, Dunn 106
7.00 – 9.40 p.m. Palaeontology in Atlantic Canada, Dunn 108
9.00 – 11.30 p.m. Poster session and cash bar, McCain Student Centre

Saturday, 31st January, 2015
8.00 – 9.40 a.m. Palaeontology in Atlantic Canada, Dunn 113
8.00 – 9.40 a.m. Current Research in Atlantic Canada – Tectonics and Structural Geology, Dunn 106
8.20 – 9.40 a.m. Geoscience Education and Outreach, Dunn 108
10.00 – 10.20 a.m. Refreshment break
10.00 – 11.00 a.m. Geoscience Education and Outreach, Dunn 108
10.00 – 11.00 a.m. Current Research in Atlantic Canada – Dunn 106
10.00 – 11.20 a.m. Hypabyssal Magmatic Hydrothermal Processes & Associated Mineralization, Dunn 113
11.00 – 12 noon Poster sessions open
12 noon – 2.00 p.m. Luncheon and Annual General Meeting, Tweedie Hall, McCain Centre
2.00 – 4.40 p.m. Hypabyssal Magmatic Hydrothermal Processes & Associated Mineralization, Dunn 113
2.00 – 3.40 p.m. Geoscience Education and Outreach, Dunn 108
2.00 – 4.00 p.m. Current Research in Atlantic Canada, Dunn 106
4.00 – 5.30 p.m. AGS Education Committee: meeting, Dunn 108
4.00 – 5.00 p.m. Judges’ convention, Multipurpose room, Student Centre
5.00 – 6.00 p.m. Science Atlantic (Geology) committee, Multipurpose room, Student Centre
6.00 – 7.00 p.m. Cash Bar, Tweedie Hall, McCain Student Centre
7.00 p.m. – midnight Awards banquet and social. Guest speaker, Jenna Boon, Executive Director, Joggins Fossil Centre: “Geological Heritage: A Global Perspective”, Tweedie Hall after dinner – midnight: Open mike, showcasing instrumental and voice in the Tweedie Hall.
PROGRAM AT A GLANCE

<table>
<thead>
<tr>
<th>Time</th>
<th>Dunn 113</th>
<th>Dunn 108</th>
<th>Dunn 106</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friday 7.00-9.40</td>
<td>Palaeontology in Atlantic Canada</td>
<td>Palaontology in Atlantic Canada</td>
<td>Current Research in Atlantic Canada – Geomorphology and Sedimentary Geology</td>
</tr>
<tr>
<td>Saturday 8.00-9.40</td>
<td>Palaeontology in Atlantic Canada</td>
<td>Geoscience Education and Outreach</td>
<td>Current Research in Atlantic Canada – Tectonics and Structural Geology</td>
</tr>
<tr>
<td>Saturday 9.40-10.00</td>
<td>Refreshment Break</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturday 10.00-11.00</td>
<td>Hypabyssal Magmatic Hydrothermal Processes and Associated Mineralization</td>
<td>Geoscience Education and Outreach</td>
<td>Current Research in Atlantic Canada – Petrology</td>
</tr>
<tr>
<td>Saturday 11.00-12.00</td>
<td>Poster Session (Tweedie Hall) / Geoheritage Workshop, Dunn 106</td>
<td>Geoscience Education and Outreach</td>
<td></td>
</tr>
<tr>
<td>Saturday 12.00-2.00</td>
<td>Luncheon and Annual General Meeting</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Saturday 2.00-4.20</td>
<td>Hypabyssal Magmatic Hydrothermal Processes and Associated Mineralization</td>
<td>Geoscience Education and Outreach</td>
<td>Current Research in Atlantic Canada – Investigative Techniques</td>
</tr>
</tbody>
</table>

TECHNICAL PROGRAM

Posters: Tweedie Hall, McCain Student Centre

Sessions:
Friday, 30th January, 5.00 – 7.00 p.m., 9.00 p.m. to 11.30 p.m.
Saturday, 31st January: posters will be up all day and available for viewing until 4.00 p.m. A special posters session is planned between 11 a.m. and 12 noon.
Posters should be set up between 3.00 and 5.00 p.m. on Friday afternoon (or as soon as possible thereafter), and taken down promptly by 4.00 p.m. on Saturday.

Student presentations (all student presenters are eligible for a best poster award. The Graham Williams Award for Best Student Poster will be awarded to the best poster by a graduate student, the Rob Raeside Award for the best poster by an undergraduate student.)

** = presented by an undergraduate student; * = presented by a graduate student

Palaeontology in Atlantic Canada, a session in recognition of the work of Laing Ferguson
Teodoro Palacios, Soren Jensen, Sandra Barr and Chris White Stratigraphic constraints on Cambrian stratigraphy, Mira and Bras d’Or terranes, Cape Breton Island, Nova Scotia.
Timothy Smithson, Jason Anderson, Chris Mansky and Jennifer Clack Tetrapods from the Tournaisian of Nova Scotia and northern Britain: new evidence of tetrapod diversity in the Early Carboniferous
Graham Williams, Sarah Damassa, Rob Fensome and Raquel Guerstein Wetzeliella and its allies — the “hole” story: a new look at the Paleogene dinoflagellate subfamily Wetzelioideae

Geoscience Education and Outreach: Past Successes and New Initiatives
Rob Fensome & William MacMillan The Atlantic Geoscience Society and the Photographic Guild of Nova Scotia — a collaboration 14 years strong
Hypabyssal Magmatic Hydrothermal Processes and Associated Mineralization
Brittany Charnley & David Lentz A preliminary multielement pXRF analysis of alteration and mineralization in the various felsic rocks of the polymetallic North Zone deposit area, Mount Pleasant, New Brunswick

Kriselle Dias & Alison Leitch Laboratory modelling of magma mingling

Ronald Massawe & Dave Lentz Hydrothermal alteration of porphyry dykes related to Cu-Ag porphyry and skarn Mineralization in the McKenzie Gulch area, northern New Brunswick

Emily Palmer, David Lentz & Hendrick Falck In situ Gamma-Ray Spectrometry: a tool to examine the degree of fractionation of pegmatites in the Prosperous Suite, NWT

Nathan Pidduck & Marcos Zentilli No tin deposits in Chile? Focus on one exception: the Belén - Tignamar district, Arica

Current Research in Atlantic Canada

Thomas Bagley, Cliff Stanley & John Murimbo Determining the heterogeneity of reference materials

Sandra Barr, Chris White, David Hapgood & Angie Barras A geological compilation map of Cape Breton Island, Nova Scotia

Dewey Dunnington, Chris White, Ian Spooner, Hilary White, Nelson O'Driscoll & Nic McLellan A 10,000 year record of environmental change at Long Lake, Cumberland Marshes Region, Nova Scotia-New Brunswick border region, Canada

Erin McKee, Michael Deal & Ian Spooner A paleoenvironmental and paleogeographic reconstruction of the Terminal Archaic - Woodland Boswell site, Kingston, Nova Scotia

Céline Porter, Sandra Barr & Chris White Petrography and chemical characteristics of mafic dykes and sills in the Antigonish Highlands, Nova Scotia

Daniel Sénéchal & Bruce Broster A soil geochemical survey of Fredericton, New Brunswick, Canada

Lisa Slaman, Sandra Barr, Chris White & Deanne van Rooyen Petrology and age of the “Chéticamp pluton”, western Cape Breton Highlands, Nova Scotia

Tim Webster, Kevin McGuigan & Nathan Crowell Results from the first topo-bathymetric lidar surveys of the Chiroptera II sensor reveals near-shore structures to improve geological mapping
Oral Presentations:
All undergraduate student presenters are eligible for the Rupert MacNeill Award for the best undergraduate student oral presentation and graduate students for the Sandra Barr Award for the best graduate student oral presentation. **Undergraduate Student Presenter; *Graduate Student Presenter.

Friday evening, 7.00 – 9.40 p.m., Dunn 108
Palaeontology in Atlantic Canada, a session in recognition of the work of Laing Ferguson
Chairs: Lynn Dafoe and Zabrina Prescott
7.00-7.20 Graham Williams It’s a Laing story: the life and times of an icon
7.20-7.40 Zabrina Prescott A cabinet of curiosities: Treasure hunting in the collections of the Nova Scotia Museum and the importance of community engagement
7.40-8.00 Stephen Donovan, Dave Keighley, Randy Miller and Reg Wilson Silurian crinoids from northern New Brunswick, eastern Canada
*8.00-8.20 Laura MacNeil, Peir Pufahl, Noel James, Melissa Grey, Deborah Skilliter and Ken Adams Peritidal cycles and paleoecology of a saline giant: the Early Carboniferous Windsor Group, Nova Scotia
8.40-9.00 Alessandro Ielpi, Martin Gibling, Arden Bashforth and Chinemerem Dennar Pennsylvanian fluvial channels influenced by vegetation in the Joggins Formation, Nova Scotia
**9.00-9.20 Regan Maloney, Melissa Grey, Peir Pufahl and Don Stewart Evolutionary trends of the Carboniferous ostracod Velatomorpha altilis, Joggins Fossil Cliffs, UNESCO World Heritage Site
*9.20-9.40 Matt Stimson, John Calder and Brian Hebert The top predator of Joggins and its tracker Donald Reid

Friday evening, 7.00 – 9.00 p.m., Dunn 106
Current Research in Atlantic Canada – Geomorphology and Sedimentary Geology
Chairs: Bruce Broster, Tim Webster
7.00-7.20 Antony Berger Tracking rapid landscape change in Gros Morne National Park with time-lapse photography
7.20-7.40 Bruce Broster and Darryl Pupek Coastal buried valleys: an unappreciated resource and potential hazard risk
7.40-8.00 Calvin Campbell, Robbie Bennett, Kimberley Jenner & Lisel Currie A potential marine paleo-earthquake record from Pond Inlet, Nunavut
8.00-8.20 Tim Webster, Kevin McGuigan & Nathan Crowell Results from the first topobathymetric lidar surveys of the Chiroptera II sensor reveals near-shore structures to improve geological mapping
**8.20-8.40 Winson Li and Alex Hay Sediment disturbance due to storm wave action on a steep, mixed sand and gravel beach on the Bay of Fundy
*8.40-9.00 Adrienne Noftall Geochemical characterization of fine-grained Carboniferous strata of the Maritimes Basin Complex of New Brunswick
Saturday morning, 8.20 a.m. – 9.40 a.m., Dunn 113
Palaeontology in Atlantic Canada, a session in recognition of the work of Laing Ferguson
Chair: Lynn Dafoe and Zabrina Prescott

8.20-8.40 Sharane Simon and Martin Gibling Sedimentology and taphonomy of the plant-bearing beds of the Colwell Creek Pond site in the Early Permian Clear Fork Group of north-central Texas

8.40-9.00 Laura Broom, Martin Gibling and Tim Fedak The diversity of life in braided river systems during the Late Triassic at Burntcoat Head, Nova Scotia

9.00-9.20 Lynn Dafoe Trace fossils as indicators of fully marine and restricted marine settings in conventional core, offshore Labrador, Canada

9.20-9.40 Rob Fensome and Graham Williams Adventures in Mesozoic-Cenozoic event stratigraphy, northern and offshore eastern Canada

Saturday morning, 8.00 a.m. – 9.40 a.m., Dunn 108
Geoscience Education and Outreach: Past Successes and New Initiatives
Chair: Jennifer Bates and Graham Williams (Geological Survey of Canada - Atlantic)

8.00-8.20 Martha Hild and Sandra Barr A popular guide to the geology of publically accessible scenic sites in Nova Scotia, Canada

8.20-8.40 Tim Fedak Visual skills in geoscience education: drawing, a museum perspective

8.40-9.00 Jennifer Bates, Patrick Potter, Dave Frobel, Nancy Muzzatti, and Graham Williams Video as a tool in geoscience education

9.00-9.20 John Calder Why we need to embrace the concept of geoheritage

Saturday morning, 8.00 a.m. – 9.40 a.m, Dunn 106
Current Research in Atlantic Canada – Tectonics and Structural Geology
Chair: Brendan Murphy, Adrian Park

8.00-8.20 Emaline Atherton & Djordje Grujic Seismic strain and the state of stress in the crust of the Himalaya

8.20-8.40 Brendan Murphy, Cecilio Quesada & Gabriel Gutierrez Alonso Reconciling mutually incompatible models for the tectonostratigraphic zonation of the Variscan Orogen in western Europe

8.40-9.00 Lauren Eggleston, John Waldron and Holly Stewart Tectonic evolution of the Sackville sub-basin: problems and possibilities

9.00-9.20 Adrian Park, Sandra Barr, Chris White, Susan Johnson & Greg Dunning Southwestern end of the St Martins-Stewart Mountain high-strain zone: Big Salmon River-St. Martins area, southern New Brunswick

9.20-9.40 Stefanie Wenker & Christopher Beaumont Continental rifts: lithospheric weakness and strength contrasts as triggers for necking instabilities

----- Refreshment Break -----
Saturday morning, 10.00 a.m. – 11.20 a.m., Dunn 113
Hypabyssal Magmatic Hydrothermal Processes and Associated Mineralization
Chairs: Zeinab Azadbakht (University of New Brunswick) and Marcos Zentilli (Dalhousie)
10.00-10.20 Dan Kontak Magmatic-hydrothermal ore-forming systems: Products of resurgent boiling, fluid focusing and changing PTX conditions
10.20-10.40 Alan Anderson, Thomas Lee and Robert Mayonovic In situ spectroscopic studies of the Mo-H-O system to 500°C and 150 MPa
*10.40-11.00 Kriselle Dias and Alison Leitch Laboratory modelling of magma mingling
*11.00-11.20 Zeinab Azadbakht, David Lentz and Chris McFarlane Using biotite composition of the Devonian Mount Elizabeth Intrusive Complex, New Brunswick, as a proxy for magma fertility and differentiation in W-Mo-Au-Sb mineralized magmatic hydrothermal systems

Saturday morning, 10.00 a.m. – 11.00 a.m., Dunn 108
Geoscience Education and Outreach: Past Successes and New Initiatives
Chairs: Jennifer Bates and Graham Williams (Geological Survey of Canada - Atlantic)
10.00-10.20 Robert Grantham Preserving collections
10.20-10.40 Anne Marie Ryan Ethics in geoscience: our integrity is at stake
10.40-11.00 Sydney Lancaster and John Waldron Boundary|Time|Surface: Art and geology meet in Gros Morne National Park, NL, Canada

Saturday morning, 10.00 a.m. – 11 a.m., Dunn 106
Current Research in Atlantic Canada – Petrology
Chair: Barrie Clarke, Rob Raeside
*10.00-10.20 Jillian Kendrick, Rebecca Jamieson & Glenn Chapman Multistage corona formation in Algonquin metagabbro: unravelling the metamorphic history of Grenvillian lower crust
**10.20-10.40 Beth Lymer and Richard Cox An examination of fractionation on a planetary scale: examples from meteorites
10.40-11.00 Barrie Clarke, Chris McFarlane, Greg Dunning, David Stevens & David Hamilton Applied forensic igneous petrogenesis: locating the source quarry for the “Black Granite” Titanic headstones in Halifax, Nova Scotia

Saturday morning, 11.00 – 12 noon, Dunn 108
Geoheritage Workshop
Chair: John Calder (NS DNR)
In this workshop, participants will explore issues and applications of Nova Scotia’s Geoheritage List in promoting awareness of Earth Science both on the ground and through GIS and other apps, community economic development possibilities, and specific events for the upcoming year.

Atlantic Geoscience Society Luncheon and Annual General Meeting
Tweedie Hall, Student Centre (tickets required) 12 noon – 2.00 p.m.
Saturday afternoon, 2.00 p.m. – 4.40 p.m., Dunn 113

Hypabyssal Magmatic Hydrothermal Processes and Associated Mineralization (continued)

Chairs: Zeinab Azadbakht (University of New Brunswick) and Marcos Zentilli (Dalhousie)

*2.00-2.20 Fergus Tweedale, Jacob Hanley, Dan Kontak and Neil Rogers An evaluation of alteration assemblages and fluid-inclusion chemistry in granitoid samples from the South Mountain Batholith, Nova Scotia: a tool for deciphering barren and mineralized zones

2.20-2.40 Dave Lentz The role of thermal constraints in extreme fractionation of felsic magmatic systems: examination of critical controls to protore and (or) ore formation

*2.40-3.00 Nadia Mohammadi and David Lentz Magmatic evolution of the Late Devonian Mount Douglas Leucogranites, southwestern New Brunswick, Canada; an example of extreme fractional crystallization

3.00-3.20 Chris McFarlane, Brian Roulston and Colin MacDonald Carboniferous volcanic rocks in the Picadilly Mine, Sussex, NB

3.20-3.40 Marcos Zentilli and Milton Graves Superimposed mineralizing events involved in making giant ore deposits: Evolution of the telescoped Chuquicamata porphyry Cu-Mo deposit, Chile

3.40-4.00 Mike MacDonald, Peter Akerley and Michael Gillis The Altan Nar carbonate-base metal gold-silver deposit, southwestern Mongolia

*4.00-4.20 Carlin Lentz, Chris McFarlane and Hendrik Falk Petrogenetic controls on gold mineralization within the Amber Zone at Cantung W mine, NWT

4.20-4.40 Discussion

Saturday afternoon, 2.00 p.m. – 3.40 p.m., Dunn 108

Geoscience Education and Outreach: Past Successes and New Initiatives

Chairs: Jennifer Bates and Graham Williams (Geological Survey of Canada - Atlantic)

2.00-2.40 Martha Grantham Earth Science education – shake it up!

2.40-3.00 Rob Fensome and Graham Williams Four Billion Years, four hundred weeks and four hundred people (give or take): the story of a popular book on the geology of Canada

3.00-3.40 Jason Loxon Using pancakes and Plexiglas® to teach geology

4.00 AGS Education Committee: meeting

Saturday afternoon, 2.00 p.m. – 4.00 p.m., Dunn 106

Current Research in Atlantic Canada – Investigative Techniques

Chairs: Karl Butler and Peter LeLièvre

2.00-2.20 Eric Mott & Karl Butler Salt water intrusion within a Carboniferous sandstone aquifer at Richibucto, New Brunswick as revealed by hydrogeophysical and petrophysical investigations

*2.20-2.40 Shuang Wang, Karl Butler, S. Danielescu, B. Peterson, E. Mott, & M. Grimmett Cross-hole electrical resistivity imaging to study water and nitrate infiltration processes at Harrington Research Farm, PEI, Canada

2.40-3.00 Peter LeLièvre & C.G. Farquharson Mesh- and surface-based geophysical inversion of IOCG deposits

*3.00-3.20 Andrew Ringeri, Karl Butler, Kerry MacQuarrie, Bruce Colpitts & Bruce McLean Long-term joint monitoring of self-potential and temperature with active thermometry for seepage surveillance at the Mactaquac Dam, New Brunswick

**3.20-3.40 Victoria Desjardins, Anne-Marie Ryan Exploring the effect of chloride from deicing salts on heavy metal concentrations in urban soils: a case study in Halifax, Nova Scotia, Canada

**3.40-4.00 Sean Des Roches, John Gosse, Gabriel Fajardo & M. Taylor Testing a grain size-based approach to TCN isochron burial dating

Atlantic Geoscience Society Awards Banquet

Tweedie Hall (tickets required) 7.00 p.m.
followed by AGS Kitchen Party Open Mic
ABSTRACTS

(*Undergraduate Student Presenter; †Graduate Student Presenter, ‡ Poster)

In situ spectroscopic studies of the Mo-H-O system to 500°C and 150 MPa

ALAN J. ANDERSON¹, THOMAS P. LEE¹, AND ROBERT A. MAYANOVIC²

1. Department of Earth Sciences, St. Francis Xavier University, Antigonish, Nova Scotia B2G 2W5, Canada
 <aanderso@stfx.ca> ¶ 2. Department of Physics, Astronomy and Materials Science, Missouri State University, Springfield, Missouri 65897, USA

Fluid inclusion evidence suggests that aqueous fluids of intermediate density play an important role in the transport of molybdenum in ore-forming hydrothermal systems associated with hypabyssal intrusions. In order to better understand the solubility and speciation of Mo in such supercritical fluids, a method has been developed to directly investigate the Mo-H-O system at elevated pressures and temperatures using complementary x-ray and vibrational spectroscopic techniques. In this communication we describe a novel procedure for **in situ** solubility measurements of minerals, and present new data on the solubility of molybdite and on the local structure of Mo aqua ions in aqueous fluids of intermediate density at temperatures and pressures up to 500°C and 150 MPa, respectively.

Seismic strain and the state of stress in the crust of the Himalaya

EMMALINE ATHERTON AND DJORDJE GRUJIC

1. Department of Earth Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada
 <emmaline.atherton@dal.ca>

The Himalayan orogeny is characterized by a series of north-dipping thrust faults and shear zones formed as a result of the ongoing convergence of the Indian and Eurasian tectonic plates. The Main Frontal Thrust (MFT) and the Main Boundary Thrust (MBT) span the entire length of the orogen and merge at depth into the Main Himalayan Thrust (MHT) – the basal detachment of the Himalaya. The majority of seismicity is concentrated along a belt located approximately 100 km from the mountain front. Most of the available focal mechanisms yield solutions compatible with thrusting along a ramp of the MHT. In a section of the eastern Himalaya the seismic belt is interrupted and there have been no major seismic events in written record. Since the geodetic convergence rates in the eastern Himalaya are higher than in the west, and the lithology does not change significantly, the lack of seismicity in this area is puzzling. This study uses records of crustal seismicity to determine and quantify changes in seismic strain along strike of the orogen.

The Himalaya was separated into five geographic regions and fault-slip inversion was performed on the related seismic data. Fault plane solutions show a prominent thrust fault regime in the seismic belt of the western to central Himalaya and a normal fault regime directly to the north. From west to east, the normal faults indicate NW-SE to W-E extension which is interpreted as the result of faulting along the south Tibetan grabens. In contrast, a strike-slip fault regime is dominant both in the eastern Himalaya (east of 87°E) and to the south of the Himalaya in the Shillong Plateau. The latter is the only elevated area outboard the Himalaya and is one of the most seismically active areas covered in this study. Along the entire Himalayan arc the orientation of the kinematic axes and of the principal stresses changes progressively with the curvature of the orogen. However, when moving from west to east we observe a sudden change in the relative size of the principles stresses.

Understanding how the geometry of seismic strain changes throughout the Himalaya is necessary in order to properly assess where stresses might be accumulating, as infrastructure in north-eastern India would not withstand a large-magnitude earthquake.

Using biotite composition of the Devonian Mount Elizabeth Intrusive Complex, New Brunswick, as a proxy for magma fertility and differentiation in W-Mo-Au-Sb mineralized magmatic hydrothermal systems

ZEINAB AZADBAKHT, DAVID LENTZ, AND CHRISTOPHER MCFARLANE
Department of Earth Sciences, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada <Zeinab.Azadbakht@unb.ca>

The Early Devonian (418±1 Ma, monazite U-Pb) Mount Elizabeth intrusive complex, New Brunswick, Canada, is a multiphase metaluminous to weakly peraluminous, high K calc-alkaline body that shows within plate affinity. The complex consists of apparently contemporaneous igneous suites including a mafic suite, an eastern peraluminous granite suite and a western alkali granite suite. The eastern part comprises a compositionally and texturally homogenous biotite granite, whereas the western part is mostly heterogeneous and contains five different units. The
most abundant phase of the western suite is a medium- to coarse-grained alkaline equigranular granite. This complex poorly exposed so that most of the available data, including inferred contact relationships, is based on geophysical data. It should be added that no mineral occurrences have been reported so far from this complex.

Fresh biotite from this intrusion was analysed from core to rim by electron microprobe, and laser ablation-ICP-MS at the University of New Brunswick to test whether biotite preserves a record of magma evolution in terms of major- and trace-element and halogen compositional variations.

Subhedral to elongate biotite phenocrysts are less than 700µm long and reddish brown in colour indicative of a reduced I-type source. A calc-alkaline affinity is also suggested by biotite major element classification schemes. Biotite is locally altered to chlorite along cleavage planes, and typically contain iron oxides, monazite, ilmenite, apatite, xenotime, and zircon as mineral inclusions.

Results of electron microprobe and laser-ablation ICP-MS studies indicate that biotite grains are homogenous in major elements; however, they show variation in trace elements from core to rim. The biotite grains investigated have the highest Sn, W, Sb, and Mo concentrations recorded thus far among Devonian-related granitoid intrusions of New Brunswick (130, 40, 1, 3 ppm respectively). There is no systematic correlation between major elements including FeTot or FeTOT/Ti and any of these trace elements. To further study trace-element distribution, a biotite from each of the phases was mapped with laser-ablation ICP-MS revealing patchy Ba, Rb, and Cs zoning. These patterns are interpreted to be a result of localized hydrothermal alteration and intracrystalline volume diffusion in these biotite grains. The intracrystalline distribution of Sn, W, Mo and Sb is homogeneous.

Furthermore, halogen contents analysed by EPMA indicate that hydroxyl is the dominant component of hydroxyl site followed by fluorine. It also showed that these biotites formed from a strongly contaminated and reduced I-type granite.

As a result, high concentration of Sn in biotite is interpreted to be caused by crustal contamination, and low-temperature hydrothermal processes (sub-solidus) rather than being magmatic in origin.

Determining the heterogeneity of reference materials

THOMAS E. BAGLEY¹ CLIFFORD R. STANLEY¹ AND JOHN D. MURIMBOH²

1. Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia B4P 2R6
2. Department of Chemistry, Acadia University, Wolfville, Nova Scotia, B4P 2R6

A new method is proposed to determine the heterogeneity of a reference material to separate the analytical and inter-lab errors from the standard deviation. Reference materials are used by geoscientists to assess the quality of a geochemical analysis. Certified Reference Materials are reference materials for which an accepted concentration and standard deviation have been determined by independent labs. Ideally, geoscientists can use Certified Reference Materials to determine laboratory error, and apply it to geological samples with a similar concentration and matrix. However, the accepted standard deviation is a function of Certified Reference Material heterogeneity, lab error, and inter-lab error. Inter-lab error is caused by variations in procedure between the laboratories that determined the certified values. Furthermore, the accepted standard deviation only applies to the sample mass for which the element was certified. Procedures using a larger sample mass will have less variance and procedures using a smaller mass will have more variance. It is possible to algebraically separate the analytical and inter-lab errors from the standard deviation by analyzing both small and large samples. This approach uses the product of the sample mass and the variance to express sample heterogeneity which can be applied to any sample mass.

A geological compilation map of Cape Breton Island, Nova Scotia

SANDRA M. BARR¹, CHRIS E. WHITE², DAVID HAPGOOD², AND ANGIE BARRAS²

1. Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
2. Nova Scotia Department of Natural Resources, P.O. Box 698, Halifax, Nova Scotia B3J 2T9, Canada

Cape Breton Island is well known for its scenic vistas, economic resources (e.g., coal, gypsum, sulphide deposits), and diverse geology. All three are related to its long and complex geological history, including the oldest and youngest geological units in Nova Scotia. This history, akin to that of Newfoundland and New Brunswick, makes the island an important target for economic resource exploration; however, such work is hampered by the lack of a consistent set of detailed geological maps. This project is aimed at producing such maps at a scale of 1:50,000 covering the entire island and incorporating all bedrock geological units. The maps will be supported by a database including outcrops locations, structural information, samples, geochemical, and magnetic susceptibility data.
The data are being compiled in an ArcGIS database, and the maps will include topographic contours, outcrops, and structural data draped on a shaded relief image. The data for Carboniferous units have been compiled mainly from previously published geological maps and databases of the Nova Scotia Department of Natural Resources and the Geological Survey of Canada. For pre-Carboniferous units, the data are derived in large part from digitation of decades of 1:10 000-scale field data in theses and reports by Barr and her students and colleagues at Acadia and Dalhousie universities. It is anticipated that the maps will be available by the end of 2015, although work on the database will be a longer term project.

Video as a tool in geoscience education

JENNIFER L. BATES, **D. PATRICK POTTER**, **DAVID FROBEL**, **NANCY MUZZATTI**, **AND GRAHAM WILLIAMS**

1. Natural Resources Canada, Geological Survey of Canada (Atlantic), Bedford Institute of Oceanography, 1 Challenger Drive, Dartmouth, NS B2V 2A4, Canada <Jennifer.Bates@NRCan-RNCan.gc.ca>

2. 44 Ellenvale Avenue, Dartmouth, Nova Scotia, B2W 2W5, Canada

In today’s world, making a video is a spontaneous, daily activity for some. These vid clips (as they are commonly called), most often serve to entertain. To produce a video for education purposes is another matter, requiring detailed planning, varied expertise, and professional equipment. The Atlantic Geoscience Society (AGS) Video Committee has a long history and good reputation in the production of education videos. This experience and knowledge is an excellent foundation on which to develop video clips (3-5 minute) for an outreach education audience. A number of other, reputable geological societies and surveys around the world have created video and audio products for their online audiences, and AGS needs to join this trend. The British Geological Survey, the Geological Society of London, the United States Geological Survey, and the New Zealand Geological Survey can boast of excellent traditional video clips as well as “artsy” clips that present a range of topics from geological history of their country, to trendy climate change and coastal erosion, to building stones of historical sites. Some groups also produce podcasts (audio only) that AGS could develop to enhance its geological-site publications. Atlantic Canada has untold geological stories waiting to be posted to the online world in this new format. To establish such a presence, AGS can choose to produce video clips of the sites highlighted in its “Nova Scotia Rocks” brochure or the field guides for the 20 years of Nova Scotia EdGEO Workshops and numerous Elderhostel programs. A quick mark could be made by posting a selection of stand-alone segments of AGS’s professionally-produced videos (e.g. “Halifax Harbour: A Geologic Journey”). Establishing an AGS channel on You Tube, in addition to posting the clips and podcasts on the AGS website, would disseminate the works to a wider audience. Whatever the path, the AGS Video Committee has some busy, and exciting, days ahead.

Tracking rapid landscape change in Gros Morne National Park with time-lapse photography.

ANTONY R. BERGER

3 Prince St., Wolfville, Nova Scotia, B4P 1P7 Canada <aberger@bellaliant.net>

Parks and other protected areas can provide baselines for environmental monitoring, where the condition of landscapes and ecosystems away from direct human interference can be tracked in response to regional or global stresses, including climate change. However, despite efforts to maintain them in some static, pre-human “natural” state, parks, like landscapes everywhere, are subject to numerous non-human drivers of rapid change, involving physical, chemical and ecological processes. Within Gros Morne National Park in western Newfoundland, a personal project involving repeated (time-lapse) photography is helping to assess the current physical stability of certain coastal and inland sites. The result is a photographic record up to a century long, of slope failure by sagging, slumping and rock falls, the development of stone rings and patterned ground, the formation of travertine deposits at sites of on-going serpentinitization, the movement of rocks along intertidal platforms, changes to marine estuaries and to alluvial rivers and fans, and trends in late-lying snow beds along mountain tops. Other sites, where changes might have been expected, show little or none. The information derived from such studies can contribute to assessments of ecological integrity and general environmental “health”. In Gros Morne, and for the towns and villages within and adjacent to the Park, this can assist in the management of public safety (landslides, rock falls, large-scale sags and coastal slumps), ecological integrity reporting, the protection of special sites (e.g. the C/O boundary stratotype at Green Point), and visitor interpretation programs. Involving local residents and school kids in similar projects can help to give them a clearer sense of the abiotic components of landscapes and the nature of contemporary geological change.
Braided-fluvial deposits of the Late Triassic Wolfville Formation at Burntcoat Head have yielded important vertebrate bone material. The present study integrates fluvial sedimentology with the fossil record to gain a more complete understanding of the paleoenvironment and paleoecology. The Wolfville Formation was deposited within the extensional Fundy Basin during the break up of Pangaea. The 30 m studied section comprises channel bodies up to 6 m thick stacked to form three channel-belt complexes with planar bases, up to 13.5 m thick. The channel deposits comprise thin lags of mudclast conglomerates, coarse- to fine-grained sandstones, interpreted as bedload deposits of bars and channel fills, and floodplain deposits that include pedogenically modified clay rich fine sandstones and claystones with carbonate nodules. Architectural elements include laminated sand sheets, lateral and downstream accretion macroforms, and sandy bedforms, with plane-bedded sandstones and large dunes prominent. Paleoflow was near parallel to the cliff line with an average direction of 057°.

Reworked partial skeletons and bone and teeth fragments reveal a substantial diversity of vertebrates. Collections at the NS Museum of Natural History yielded over 60 specimens from the area, some specific to the studied interval. Bone fragments of tetrapods range from a few mm to over 20 cm in length and were found as clasts within mud-clast conglomerates and fine- to medium-grained sandstone. Recent discoveries from the site include the partial skeleton of an archosauromorph reptile, *Teraterpeton hrynewichorum*, and procolophonid reptiles including *Acadiella psalidodon*, *Haligonia bolodon*, and *Scoloparia glyphanodon*. Trace fossils transitional between *Taenidium* and *Planolites* are locally abundant within channel sandstones and floodplain fine sandstones and claystones. Plant fossils were not observed, but possible vegetation-induced sedimentary structures were documented.

The fluvial deposits formed near the paleoequator in a semi-arid climate with seasonal rainfall and high discharge, as indicated by thick plane-bedded sandstones, the abundance of scoured surfaces, and carbonate paleosols. Known localities of bone material are linked to the base of channel fills and in-channel dunes, and the matrix of other fragments suggests a similar setting. Burrows indicate that invertebrates were active in channels during periods of abandonment and in floodplain deposits, and a cryptic record suggests the presence of vegetation. The variety of taxa indicates that life flourished along these Triassic braided channels.

Coastal buried valleys: an unappreciated resource and potential hazard risk

BRUCE E. BROSTER AND **DARRYL A. PUPEK**

1. *Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada* <broster@unb.ca> ¶ 2. *Department of the Environment and Local Government, PO Box 6000, Fredericton, New Brunswick E3B 5A3*

During glaciation, ice sheets occupied all of Atlantic Canada and parts of New England, significantly altering the landscape and changing drainage patterns. Pre-existing valleys were enlarged, new channels eroded and many valleys infilled with glacial sediments, some buried under ground moraine during glacier advance and others buried during glacier retreat. Deglaciation in many coastal areas was accompanied by frontal retreat of decaying glacier masses as isostatically depressed areas experienced marine transgression from rising sea level. New drainage patterns were developed where pre-glacial valleys remained buried or not fully exhumed by proglacial or Holocene-age fluvial down-cutting.

In some areas buried valleys exist as isolated remnants or conduits connected to lakes that can be used as potable groundwater aquifers (e.g. Sussex and Plaster Rock in NB). However, in coastal areas buried valleys often extend off-shore and can enable rapid infiltration and up-river migration of saline water as fresh water is extracted from aquifers farther inland. Examination of drill records in New Brunswick indicates that saline waters are found along some valleys at locations over 100 km from existing shorelines. This is demonstrated where the buried or existing estuarine valleys extend to depths greater than -60 m or -40 m, such as the Saint John River at locations 70 km and 90 km, respectively, upstream of the Bay of Fundy.

The occurrence of buried valleys and potential salinization of their resource aquifers remains a little studied hazard risk that has not be given the recognition and scientific attention that is required for the adequate protection of a sustainable resource.
Why we need to embrace the concept of geoheritage

JOHN CALDER
Nova Scotia Dept. of Natural Resources, Box 698, Halifax, Nova Scotia B3J 2T9 <John.H.Calder@novascotia.ca>

The concept of geoheritage may seem redundant or unnecessary to practicing geoscientists who do not engage either with the public or with politicians who are steered by public opinion, but at the peril of the sustained funding of geoscience. Gone are the days where geoscience is handed a blank cheque by funding agencies, or is given license by an unquestioning public. The concept of geoheritage was given form in Digne, France, in 1991, in the eloquent Déclaration Internationale des Droits de la Mémoire de la Terre (Declaration of the Rights of the Memory of the Earth). Early on, the concept was embraced primarily in Europe, where it fueled the explosion of European Geoparks. In recent years, the movement has been formally recognized by a dedicated journal Geoheritage, and specialist working groups of the IUCN and IUGS. Across Canada, the systematic documentation of each Province and Territory’s geoheritage sites is gaining momentum. The purpose of a geoheritage list is to build public awareness of their geologic heritage and its influence on a region’s cultural history. Geoheritage provides the best vehicle for public engagement, to help people better value geology and the role of geoscience in our lives. Specifically, a systematic geoheritage strategy has potential: i) to be the best vehicle to make something tangible that is to most people intangible - the principles of geology; ii) to open the doors of our scholastic towers to our fellow citizens, for their use in community-based economic development initiatives, including an essential role in identifying candidate Global Geoparks; and iii) to reconnect a largely disconnected society with the Earth on which we depend. The realization of these goals is not just a ‘feel good’ exercise, but is vital to two great issues facing humanity: i) access and limits of mineral and energy resources, by increasing public awareness of the connections between our cultural heritage and geology; and ii) better understanding of current and future global change by consulting the geologic record. A systematic, site-based approach to Geoheritage recognition, now in place for Nova Scotia, lays the foundation for realizing these goals that lie at the heart of geoscience practice.

A potential marine paleo-earthquake record from Pond Inlet, Nunavut

D. CALVIN CAMPBELL¹, J. ROBBIE BENNETT¹, KIMBERLEY A. JENNER¹, AND LISEL CURRIE²

The area offshore Baffin Island is one of the most seismically active regions in Canada with an earthquake hazard similar to coastal British Columbia. One of the largest measured passive margin earthquakes (M 7.3) occurred off northeast Baffin Island in 1933 and many measurable earthquakes happen each year in that vicinity. A primary issue for assessing earthquake hazard in the region is estimating the recurrence of large earthquakes. Instrumented records only go back to the early 1900s and large earthquakes, such as the 1933 event, may have a recurrence of 100s to 1000s of years. In this study, the marine geological record was used in an attempt to improve the estimation of regional earthquake recurrence.

Pond Inlet forms part of the waterway that separates northern Baffin Island from Bylot Island. Multibeam bathymetry from the inlet, collected as part of ArcticNet activities, shows that the seabed consists of exposed bedrock and deep sediment-filled basins. The basin sediments provide a record of late glacial and post glacial processes. In some cases, the bathymetry data reveal faults and fractures in the bedrock that coincide with lineaments and escarpments on the basin floors. In 2013, a piston core was collected in 1035 m water depth from the floor of one of the basins near the base of an interpreted fault escarpment. The purpose of the core was to test the hypothesis that the sedimentary succession at the foot of the escarpment would provide a record of movement along the fault through the deposition of debrites and turbidites. The core recovered 8 m of brown mud. There was no obvious indication of the 1933 event in the core, however eight potential ‘earthquake events’ are interpreted; two debrites and six lamina sets comprising muddy turbidites. At this time, only one radiocarbon result is available for the core indicating a sedimentation rate of 69 cm/kyr in the upper part of the core. Two additional radiocarbon results from a nearby core taken in the same basin suggest sedimentation rates of 73-160 cm/kyr. Therefore, the core likely represents a record of the last 5 to 10 thousand years. Based on these results, sediment failure occurs along the escarpment every 600-1200 years. Although other failure trigger mechanisms are not discounted at this time, this rate potentially provides insight into the recurrence of regionally significant earthquakes in northern Baffin Bay.
A preliminary multielement pXRF analysis of alteration and mineralization in the various felsic rocks of the polymetallic North Zone deposit area, Mount Pleasant, New Brunswick

BRITTANY E. CHARNLEY AND DAVID R. LENTZ
Department of Earth Sciences, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada <dlentz@unb.ca>

The Mount Pleasant deposits, located in southwestern New Brunswick, are part of a late Devonian sub-volcanic eruptive complex that intrudes into the western margin of the associated caldera; granitic intrusions are the McDougall Brook and Mount Pleasant granite suites. Mount Pleasant is divided into two zones, the North Zone dominantly Sn-Cu-Zn-In with local W-Mo and the Fire Tower Zone W-Mo-Bi deposits, with a Zn-In lode-breccia zone. A multielement pXRF study (X5000) of the surface samples (34) from the North Zone was conducted. The Ti, Th, Nb, Zr, Y, and related Ti ratios, i.e., Th/Ti, helped identify three groups of variably altered felsic host rocks; these elements are typically interpreted as immobile, although that has not been ascertained here yet. Based on correlations with Inverno’s work from 2006 and mapping in the region, they are the Little Mount Pleasant Formation (LMP) (tuff) (21), McDougall Brook porphyry/granite (MBG) (volcanic to subvolcanic) (11), and possibly Granite I or II (2) that is associated with each of the deposit systems. Further analysis of the dataset using mobile elements (pXRF data) is utilized to describe the alteration and associated mineralization and characterize it with respect to the three units identified (spatial analysis). Chlorite and sericite are associated with alteration of all units, but chloritization and sulphidation dominates at higher degrees of alteration. The high acidic conditions along with the high activity of Fe stabilized chlorite are related to sericitic alteration. Sericitization begins with the destruction of feldspars in the host rock to form sericite and biotite seems to be slightly chloritized, although it is hard to observe depending on the degree of overprinting by younger alteration assemblages. Chloritization in the rocks locally seems to be accompanied with quartz and (or) fluorite. The dominant ore minerals associated with chloritization are Fe–rich sphalerite and arsenopyrite. The amounts of Fe present reflect pyrite, magnetite, and (or) chlorite abundance, whereas chloritization gives high amounts of Fe, Mn, and Mg in the rocks. Because chloritization and sulphidation dominates and higher degrees of alteration, Fe increases and K decreases; therefore Fe/K increases from weakly to intensely altered and mineralized rocks. Fe correlates poorly with K (r’= -0.05), but shows that Granite I-II is probably less affected by sericitization than LMP and MBG. When plotting Fe/K vs. Ca (r’=0.26) indicates fluorite alteration in greisen and chlorite zones. Fe/K vs. S shows a positive correlation (r’=0.42) related to sulphidization associated with chlorite. W correlates with Fe/K (r’=0.48), Bi correlates with Fe/K (r’=0.37), Sn correlates with Fe/K (r’=0.49), Mo correlates with Fe/K (0.35), and Cu correlates with Fe/K (r’= 0.30).

Applied forensic igneous petrogenesis: locating the source quarry for the “Black Granite” Titanic headstones in Halifax, Nova Scotia

D. BARRIE CLARKE1, CHRISTOPHER R.M. MCFARLANE2, GREGORY R. DUNNING3, DAVID STEVENS4, DAVID HAMILTON5

1. Department of Earth Sciences, Dalhousie University, Halifax, NS, Canada B3H 4R2 <clarke@dal.ca>¶ 2. Department of Earth Sciences, University of New Brunswick, Fredericton, NB, Canada E3B 5A3 ¶ 3. Department of Earth Sciences, Memorial University, St. John’s, NL, Canada A1B 3X5 ¶ 4. 5175 Route 127, Bocabec, NB, Canada E5B 3H3 ¶ 5. Department of Mathematics and Statistics, Dalhousie University, Halifax, NS, Canada B3H 4R2

In Halifax, Nova Scotia, 149 victims of the 1912 sinking of the Titanic lie beneath petrologically identical “black granite” headstones. Those headstones, supplied by the White Star Line, arrived in Halifax in late 1912, but no known historical document reveals their source. They consist of a medium- to coarse-grained olivine-bearing gabbro, with cumulus phases consisting of randomly oriented euhedral plagioclase laths (An50-70), corroded olivine (~Fo63), and titanomagnetite (7.5 wt.% TiO2) with Ti-hornblende and biotite reaction rims, and intercumulus material consisting of titanaugite (~Wo43En42Fs15) with reaction rims of titaniferous hornblende, both of which are variably uralitized. Three types of evidence (quantitative – radiometric age of 422 Ma, zircon U/Th ratios, olivine FeO/(FeO+MgO) ratios, clinopyroxene trace-element compositions, whole-rock chemical compositions; qualitative – mineral assemblage, modal proportions, textural parameters, style and degree of alteration; and circumstantial – regional reputation, quarrying history, local logistics, regional transportation, McGrattan “paperweight”) connect the Titanic headstones to the St. George Batholith in SW New Brunswick. Precise matching of any dimension stone to its source quarry is problematic, because that stone no longer resides in the quarry. Given this constraint, one of three possible conditions must obtain: (i) if the correct quarry is homogeneous on a scale larger than the quarry, all the physical, chemical, and temporal parameters of the quarry walls and floor will perfectly match those of the
headstones; (ii) if the correct quarry is monotonically heterogeneous on a scale larger than the quarry, the physical and chemical parameters of the walls and floor of the quarry will bracket those of the headstones, and the ages will match precisely; or (iii) if the correct quarry is erratically heterogeneous, the physical and chemical parameters in the walls and floor of the quarry may not bracket some, or even all, of these parameters in the headstones, but the ages will still match precisely. In the case of the Titanic headstones, most quantitative parameters in the quarry fall under condition (ii) above, but some parameters (Sr, Zr, Hf, Ga, middle REEs) fall under condition (iii). No individual line of evidence, on its own, is sufficient to identify the source quarry, but the combination of the cumulative weight of all the quantitative, qualitative, and circumstantial evidence plus a process of elimination suggests that the Charles Hanson Quarry near Bocabec, SW New Brunswick, is the source for the gabbroic Titanic headstones in Halifax. More information is available at: earthsciences.dal.ca/www/titanicgranite

Trace fossils as indicators of fully marine and restricted marine settings in conventional core, offshore Labrador, Canada
LYNN T. DAFOE
Natural Resources Canada, Geological Survey of Canada, Dartmouth, Nova Scotia B2V 2A4, Canada
<lynn.dafoe@nrcan-rncan.gc.ca>

Offshore Labrador, the Labrador Sea formed during Cretaceous rifting and Paleogene seafloor spreading. The 26 wells drilled in this area are located on the shelf in the Hopedale and southern Saglek basins and intersected Lower Cretaceous through Cenozoic sediments. In this study, sedimentary conventional core intervals of Cretaceous to early Eocene age from 13 wells were analyzed in terms of lithology, sedimentary structures, degree of bioturbation, trace fossil suites and presence of fossil material, which is extremely rare. Trace fossils combined with the sedimentology allowed for interpretation of depositional settings in the Bjarni (Barremian-Cenomanian in age), Markland (Santonian-Maastrichtian in age), and Gudrid (Paleocene-early Eocene in age) formations. In the Bjarni Formation, the northern Hopedale Basin, dark grey shales are characterized by a low abundance and low diversity, highly stressed expression of the Cruziana ichnofacies comprised of: Phycosiphon, Helminthopsis, Chondrites and Schaubcylindrichnus. The trace fossil suite and sedimentological characteristics suggest deposition within a restricted bay setting with limited oxygenation. Heterolithic sandstones and shales encountered across the Labrador margin are also characterized by trace fossil suites with a low diversity and low abundance of forms representing a stressed Cruziana ichnofacies primarily including: Helminthopsis, Chondrites, Planolites, Rhizocorallium, Palaeophycus, Asterosoma, Phycosiphon, Thalassinoides, and Skolithos. These sandier facies are cross-bedded with unbioturbated mudstone intervals and coal fragments suggesting delta front to prodelta settings under river-dominated and wave-influenced conditions. The Markland Formation in both the Hopedale and Saglek basins is characterized by fully marine trace fossil suites of the Cruziana ichnofacies (Helminthopsis, Chondrites, Phycosiphon, Planolites, Rhizocorallium, Asterosoma, Thalassinoides, Schaubcylindrichnus, and Skolithos) reflecting intense bioturbation in inner to outer shelf settings. Conversely, the Freydis Member of the Markland Formation (cored in the southern Saglek Basin) is sandstone-dominated with rare trace fossils suggestive of a stressed Cruziana ichnofacies reflecting river-dominated deltaic deposition. The Gudrid Formation in the southern Saglek Basin is characterized by heterolithic facies with trace fossil suites consistent with weakly-stressed expressions of the Cruziana ichnofacies. In one core, cross-bedded sandstones with intensive bioturbation by Helminthopsis, Macaronichnus and Spirophyton trace-makers represent a wave/storm-dominated delta front succession. In another core, wave-ripped sandy mudstones are predominated by Phycosiphon and Helminthopsis trace-makers in a prodeltaic setting. In some core intervals, localized trace fossil occurrences provide the only evidence of shallow marine deposition in what is otherwise considered to be non-marine in origin, and in other cases, trace fossils aid in delimiting more specific marine depositional settings or paleoenvironmental conditions.

A pebble identification guide for Nova Scotia
LYNN T. DAFOE1, JENNIFER BATES1, D. PATRICK POTTER1, AND MARTHA E. GRANTHAM2
1. Natural Resources Canada, Geological Survey of Canada (Atlantic), Dartmouth, NS B2V 2A4, Canada
<lynn.dafoe@nrcan-rncan.gc.ca> ¶ 2. Natural Resources Education Centre, Middle Musquodoboit, NS B0N 1X0, Canada

Nova Scotia’s extensive shoreline creates abundant opportunities for studying various aspects of geology. High-energy beaches collect thick deposits of pebble- and cobble-sized material from a variety of sources, resulting in diverse and unique assemblages. Following the lead of pebble guides created in other provinces, an initial pebble identification guide was created in 2012. The goal of this guide is to provide a means of identifying, appreciating
and understanding the origin of pebbles found on Nova Scotia beaches. There has been ongoing discussion within the AGS Education Committee to produce a second, refined version of the pebble guide for wider distribution. The audience for this guide would be elementary to high school students and the general public. Over the past few years, the guide has been primarily used as supplementary material for EdGEO courses. For this past year’s EdGEO course (at the Atlantic Science Teachers Conference) on beaches, the guide was used for a playground pebble identification activity. The pebble guide highlights the three rock types (igneous, metamorphic and sedimentary) and has a range of photographs and simple illustrations. Other interesting finds such as veining, chert, small-scale folding, and man-made objects are also included. The vision for this guide is to be available in paper (ideally free) in a format similar to that of the highly successful Nova Scotia ROCKS brochure, in addition to an online version combined with simple activities.

Exploring the effect of chloride from deicing salts on heavy metal concentrations in urban soils: a case study in Halifax, Nova Scotia, Canada

VICTORIA M. DESJARDINS AND ANNE MARIE RYAN

Department of Earth Sciences, Dalhousie University, 1459 Oxford Street, Halifax, Nova Scotia B3H 4R2

Established in 1749, Halifax has long been home to various factories and extensive military installations, and experienced the largest ever non-nuclear explosion. Still an active port city, Halifax soils variably reflect aspects of this and its geological past. A pilot study by the 2013/2014 Environmental Geoscience class at Dalhousie University determined heavy metal concentrations in residential soils of the Halifax Peninsula. At each of over 30 residences, three samples were obtained: house dripline, roadside, and an ambient sample from an open location on the property. The samples were dried, sieved to <1 mm and analyzed using X-Ray Fluorescence (XRF) for Pb, As, Cr, Cu, Zn, Ba, V, Cd, Co, Se, Mo, and Sn. In many cases, dripline values of some metals were greater than ambient values, which in turn were higher than roadside values.

One possible explanation for the lower roadside metal values is mobilization of metals by chloride from deicing salts. Sodium chloride (NaCl) is particularly effective for anti-icing and deicing in Halifax due to the moderate climate. The objective of this study is to explore the process of chloride leaching and its impact on metal mobility using soils from the Halifax Peninsula. Soil samples were collected to a depth of 10 cm and sieved to <2 mm. For each sample, leaching experiments were done with controls of 0%, 3.5%, and 23% NaCl solutions to represent pure water, saline water, and brine, respectively. For each experiment, an 85 g (approximately 1 cm thickness) soil subsample was placed in a Buchner funnel with filter paper, and compacted slightly. Subsequently, 565 mL of solution was poured through, to represent the annual average precipitation in Halifax scaled down by a factor of 10. For the 3.5% and 23% controls, 200 mL of the saline solutions were added, followed by 465 mL of distilled water. This is to account for the fact that salt loading occurs mostly from December to March, with approximately 36% of the total annual precipitation occurring in the winter months. Pre- and post-leaching heavy metal concentrations will be analyzed using XRF to determine if metal concentrations have decreased as a function of salinity. Metals of focus will be those with existing guidelines set by the Canadian Council of Ministers of the Environment. No results have been obtained to date, however a gradual darkening of the leachate from the 0% to 23% controls may suggest greater leaching with higher salinity.

Testing a grain size-based approach to TCN isochron burial dating

SEAN DES ROCHES¹, J. C. GOSSE¹, GABRIEL VELOZA FAJARDO², AND M. TAYLOR².

¹Department of Earth Sciences, Dalhousie University, Halifax NS, B3H 4R2, <sn691287@dal.ca>

²Department of Geology, University of Kansas, Lawrence KS 66045

We hypothesize that a significant sediment flux to the Andean piedmont occurred at the Pliocene-Pleistocene transition (ca. 2.6 Ma) based on thermochronology results from Antinao et al. (in prep) and tenuous terrestrial cosmogenic nuclide (TCN) burial dating by Veloza (2.6 ±0.75/-0.65 Ma, unpub). However, it is difficult to date Cenozoic-aged sediments that are older than the limit of radiocarbon and OSL (Optically Stimulated Luminescence) dating, in the absence of volcanic ashes, or a high-resolution biostratigraphy. A recently developed 26Al/10Be isochron burial dating approach uses samples with differing TCN concentrations collected from depth profiles in buried sediment. However, the use of this isochron burial dating method is dependent on finding a buried paleosol, or any surface that was exposed for a significant period of time and then subsequently buried. In regions of high relief, which are prone to landslides, there may be an alternative for sediments lacking paleosols. We evaluate here a new method of 26Al/10Be isochron burial dating based on previously observed relationship between fluvial sediment
grain size and TCN concentration. There may be a sufficient range in TCN concentration across the different grain sizes (150 to 2000 um) that an isochron curve can be precisely defined.

Fine sand to granular gravel fractions were extracted from a single 3 kg sediment sample previously collected 100 m below an incised river terrace in the Eastern Cordillera of the Colombian Andes (4.979 N, 72.825 W, 686 m elevation above sea level). The site is ideal for this study because it is still tectonically active, has high sedimentation rates (therefore low TCN concentrations to test the method’s limit) and high relief. Pure quartz from six different grain size fractions was extracted, cleaned, dissolved, and converted to Al2O3 AMS targets at the Dalhousie Geochronology Center. 27Al/26Al results from AMS (Accelerator Mass Spectrometer) at Lawrence Livermore National Lab reveal a linear relationship in 26Al concentration (ranging from 2.79 to 4.19 X 10^3 atoms/g) with grain size, as well as sufficient scatter (beyond the 20% 1-sigma precision of the AMS measurements) to define an isochron and test the new dating method. Pending 10Be concentrations will be higher (longer half-life) and more precise, so we are optimistic that this new approach will provide a useful option for dating deeply buried sediment that lack paleosols and other exposure surfaces. This should allow us to test the hypothesis of a significant Andean sediment flux increase at the climate transition.

Laboratory modelling of magma mingling
*KRISELLE DIAS AND ALISON LEITCH
Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland and Labrador
A1B 3X5, Canada <kdias@mun.ca>

Magma mingling is the process in which two separate magmas interact in a dynamic environment to cause some stirring with each other, but distinct boundaries are preserved between them. This differs from the process of magma mixing, where the resulting magma is a homogeneous rock with intermediate composition. The dynamics of magma mingling and mixing depend primarily on density and viscosity contrasts, rheology and the geometry and vigour in which one magma intrudes into another.

A series of laboratory based experiments were conducted to study the effect of magma mingling when a viscous felsic magma chamber is intruded by a localised injection of denser, intermediate to mafic magmas. A motivation of this study was to understand the dynamics of formation of a particular outcrop of the Holyrood Intrusive Suite in Eastern Newfoundland. Here, a coastal exposure shows metre-scale rounded blobs of a medium-grained intermediate rock within a medium to coarse-grained felsic host. The experiments were conducted in transparent decimetre scale tanks, and experimental materials were chosen to have density and viscosity contrasts analogous to those of magmas of differing compositions. Density contrasts were controlled by the use of aqueous salt solutions (such as NaNO3) having varying weight percentages, while viscosity contrasts were controlled by varying concentrations of oxyalkene polymers (PEG 600 wax) or cellulose ethers (MethocelTM and NatrosolTM). The effect of crystals in magmas was replicated by the use of small plastic and/or glass beads having a diameter between 0.09-0.35 mm. The experimental tank was filled with the host analogue magma, and denser analogue magma, dyed blue for visual contrast, was introduced by pump from below, by syringe from above, or more commonly by emplacing a blob-like aliquot from above.

Depending on the physical properties of the two materials, many different behaviours of the injected material were observed, including slow drips, turbulent plumes and crater-forming impacts on the bottom of the tank. The best match to the Holyrood Granite outcrop was obtained when the introduced ‘blob’ contained 25-50% beads (analogue crystals) and was only slightly denser than a high-viscosity host. This resulted in blobs which maintained their shape as they slowly sink without mixing with the surrounding fluid. This result is consistent with recent models of the Holyrood Granite outcrop blobs based on petrographic observations.

Silurian crinoids from northern New Brunswick, eastern Canada
STEPHEN K. DONOVAN1, DAVID G. KEIGHLEY2, RANDALL F. MILLER3, AND REGINALD A. WILSON4

Silurian crinoids are well documented from Iowa and Ohio, through New York, into Ontario and Anticosti Island (Québec) Canada, and across to the British Isles and Ireland. One of the remaining gaps in the database is the Silurian strata around the coast of Chaleurs Bay in the Gaspé (southern mainland Québec) and northern New
Brunswick, where crinoid material has often been noted, but rarely identified. Recent investigations have described Scyphocrinites sp. from west of Campbellton, NB, and a new morphospecies of Lanxocolumnus (col.) from west of Belledune, NB. Scyphocrinites is a genus that is an international marker for the Silurian-Devonian transition. Lanxocolumnus represents an older heteromeric crinoid column from the upper Llandovery (Telychian) and is related to the English Telychian morphospecies Cyclocyclicus (col.) geoffnewalli. The articular facets are sunken and nodals(?) have a unique feature, a circular pseudolumen into which a small internodal, lacking an epifacet, may fit. This is a further example of a crinoid taxon that migrated from Laurentia to Avalonia as the Iapetus Ocean closed.

A 10,000 year record of environmental change at Long Lake, Cumberland Marshes Region, Nova Scotia-New Brunswick border region, Canada

DEWEY W. DUNNINGTON1, HILARY WHITE2, IAN S. SPOONER1, CHRIS WHITE3, NELSON O’DRISCOLL1, AND NIC MCLELLAN4.

1. Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada <ian.spooner@acadiau.ca> ¶ 2. Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario N2L 3C5, Canada ¶ 3. Nova Scotia Department of Natural Resources, P.O. Box 698, Halifax, Nova Scotia B3J 2T9, Canada ¶ 4. Nova Scotia Provincial Office, Ducks Unlimited Canada, P.O. Box 430, Amherst, Nova Scotia B4H 3Z5, Canada

Long Lake, Nova Scotia is a small, shallow lake located 12 km inland from the head of the Bay of Fundy within the Amherst Marsh, which is part of a large coastal wetland system (Cumberland Basin marshes - CBM) in the New Brunswick – Nova Scotia border region. The Border Marshes are located along the Atlantic migratory flyway and are particularly important for waterfowl and marsh bird production providing both migration and breeding habitat. Though ecosystem integrity has been studied extensively, there are no records of the physical and chemical evolution of lakes in the CBM. In this study we use the paleolimnological method at Long Lake to construct a 10,000 year record of both natural and anthropogenically influenced change.

The paleolimnological records were derived from percussion and gravity cores and indicate that Long Lake was a productive, fresh water lake from at least 10,500 cal. BP, long before most lakes in the CBM were established. Increases in various metals including Pb, As and Hg in the core at about 5000 cal. BP are likely the consequence of regional fires, and indicate that a significant reservoir of these metals exists in the natural environment. The fire events are broadly coincident with a period of widespread drying from 8000 to 4000 cal. BP. Wetter conditions and a raised water table have persisted at the site since 4000 cal. BP. Though tidal range had increased by this time, $\delta^{13}C$ data indicate that long term marine incursions did not occur at the Long Lake site. The gravity core data indicate that physical and biological character of Long Lake has been fundamentally altered in the last 300 years by anthropogenic activity. Evidence of water level lowering and forced sediment aggradation (tiding) in the 1800s was found, consistent with historical records. Increases in metals near the top of the core are likely associated with fossil fuel combustion and naturally occurring lead mobilized by sediment re-suspension and mixing associated with boat traffic. Collectively these data indicate that Long Lake may be one of the oldest lakes in the Cumberland Basin marshes and has been fundamentally altered by anthropogenic activity in the last 300 years. The sediments in Long Lake may also represent a source for the bioaccumulation of specific metals.

Tectonic evolution of the Sackville sub-basin: problems and possibilities

LAUREN EGGLESTON1, JOHN W.F. WALDRON1, AND HOLLY STEWART2.

1. Department of Earth & Atmospheric Sciences, University of Alberta, ESB 1-26, Edmonton Alberta T6G 2E3, Canada <egglesto@ualberta.ca> ¶ 2. New Brunswick Department of Energy and Mines, Geological Surveys Branch, PO Box 6000, Fredericton, New Brunswick E3B 5H1 Canada

The Sackville sub-basin of New Brunswick lies within the Maritimes Basin in Atlantic Canada. It is a structurally complex basin bounded by: the Caledonia Uplift to the west; the Hastings Uplift, the Harvey-Hopewell and Wood Creek faults to the south; and the Westmorland Uplift and Dorchester fault to the north, which separate it from the Moncton sub-basin. Orogen-scale dextral motion and strike slip boundaries define movement of the region during the Carboniferous. Major movement in the Sackville sub-basin occurred along the Dorchester and Harvey-Hopewell Faults. Throughout the Carboniferous, the Sackville sub-basin experienced periods of subsidence, inversion, and extension.

Carboniferous sedimentary rocks within the sub-basin include Albert Formation (Horton Group) oil and gas bearing shales, Round Hill Formation (Sussex Group) conglomerates, Upperton Formation (Windsor Group)
evaporites, Maringouin Formation (Mabou Group) red mudstones, Hopewell Cape Formation (Mabou Group) coarse conglomerates, and Boss Point Formation (Cumberland Group) sandstones.

Industry seismic profiles show an allochthonous thrust wedge of unknown origin dominating the geology in the subsurface. This thrust wedge appears to be inserted southeastward into Windsor Group evaporites low in the section. The wedge could represent subsurface equivalents of the nearby Caledonia Uplift, or of the adjacent Moncton subbasin. Clues to the nature of the wedge are provided by rock chip well samples and surface correlation.

The upper surface of the wedge is probably correlative with the Harvey-Hopewell Fault adjacent to the Caledonia uplift. However, it is unclear where the trace of the Harvey-Hopewell fault continues eastward after it passes into the Shepody Bay; it may connect with the Dorchester fault through the Memramcook Estuary, connect with the Wood Creek fault across the Bay of Fundy, or die out underneath the Sackville Syncline. Regardless, the wedge indicates an important and often overlooked episode of shortening late in the history of the Sackville subbasin.

Visual skills in geoscience education: drawing, a museum perspective
TIM J. FEDAK

Fundy Geological Museum, Parrsboro, Nova Scotia B0M 1S0 <tim.fedak@novascotia.ca>

The ability to observe and document physical and spatial relationships are fundamental skills of a professional geologist. We “learn to see” like a geologist, as we do any other occupation. The ability to document through drawing is considered essential for success across most disciplines of science, technology, engineering and mathematics.

Improving spatial skills is an appropriate goal for university and museum education programs. There is convincing evidence that visual skills training can have positive and lasting effects on learners at all ages. These trends are likely to continue within the digital age. Visual elements in digital media are rapidly changing concepts of literacy and also modifying opportunities for learners to draw and document what is seen.

Insights are shared from drawing sessions offered to several groups over the past five-years, to explore linkages between observation and drawing skills. Prior sessions have included medical students (Anatomy Drawing Club), geology and biology undergraduate students (Natural History Drawing), youth science camp participants (WISE Atlantic), as well as adult and youth museum visitors (Fundy Natural History Drawing). An overview of new programs will be reviewed, including the use of in-gallery and outdoor activities, as well as new online projects with 3D-digital models.

The Atlantic Geoscience Society and the Photographic Guild of Nova Scotia - a collaboration 14 years strong

ROBERT A. FENSOME AND WILLIAM C. MACMILLAN

Geological Survey of Canada (Atlantic), Natural Resources Canada, P.O. Box 1006, Dartmouth Nova Scotia B2Y 4A2, Canada <rfensome@nrcan.gc.ca>

Following the production of the Atlantic Geoscience Society (AGS) book, The Last Billion Years and considering the significant input into that project of several members of the Photographic Guild of Nova Scotia (PGNS), there was enthusiasm in 2000 for a continuing collaboration between the two societies. Proponents agreed that this should take the form of an annual competition within PGNS sponsored by AGS, as well as an annual field trip. The inaugural competition was held in 2000 and the winner claimed “The Atlantic Geoscience Society Award”. The rules for the competition stipulated that the subject matter could include “rocks, sediments, geological processes …, minerals and fossils, as well as landscapes.” In contrast to some other PGNS competitions, the rules encouraged human interest, such as people for scale, quarries and building stones. The judging takes place at a regular PGNS meeting: as per convention, there are three judges, at least one of whom is a member of AGS. By 2003 it was clear that most entries were of images of the geology of the southwestern USA, a favourite hunting ground for PGNS members. It was decided therefore to institute a second award, The Last Billion Years Award, which was first competed for in 2004. If the overall winning image is a depiction of the geology of Atlantic Canada, it claims both awards; if not, then the best image claims the AGS Award and the best Atlantic image wins the LBY award. The competition is now in its 15th year. In addition to the completion, an annual field trip for the PGNS has been run under the aegis of AGS. The first trip was focussed on the Halifax area, and one was to Kejimkujik Seaside; but otherwise most have focussed on the diverse and colourful rocks around the Minas Basin. The trips generally attract between 10 and 30 people, with some participants more interested in the geological story and others distracted from the science by the attractive surroundings. The benefit of the interaction for the photographers is that they have an incentive to chase images from a somewhat unusual angle (for them); and the benefit for AGS is that submitted images are available for use in its educational projects or products such as The Last Billion Years.
In a series of projects and with various collaborators over the past two decades, we have been using event stratigraphy to more rigorously determine the temporal framework of Mesozoic and Cenozoic strata in northern and offshore eastern Canada. Events may be any one-time contemporaneous regional to global marker, for example a distinctive regional stratum, seismic marker or log pick, or a global geochemical signal. However, we use mainly events related to ranges of fossil species, such as extinctions, primarily of dinoflagellate cysts (dinocysts). Several of our collaborative studies also incorporate data from microfossil groups such as nannofossils and foraminifera: the more disciplines involved, usually the more refined will be the stratigraphic framework developed. The first study of the series involved Late Cretaceous-Cenozoic strata of the Scotian Margin and incorporated events based primarily on dinocysts and nannofossils, but also on spores and pollen (miospores) and foraminifera. This study was a key element of a much larger project on the Scotian Basin — the biostratigraphy component of the OETRA Play Fairway Analysis study funded by the Nova Scotia Government. This study involved new commercial analyses, as well as historical data from GSC Atlantic and incorporated data from several groups of microfossils. Throughout the progress of these studies, we were also pursuing a collaboration with the Denmark and Greenland Survey (GEUS) in developing an event stratigraphy for the Labrador Sea-Davis Strait-Baffin Bay region (the Labrador-Baffin Seaway). This study has involved the palynological analyses of 17 wells on the Canadian and Greenland margins, although using only palynological data. A gap in data caused by the lack of industry wells on the Canadian margin of Baffin Bay is being filled by ongoing studies of the palynological assemblages of shallow core holes on the Baffin Shelf and of onshore sections on Bylot Island. We are now in the initial stages of applying this approach to Mesozoic-Cenozoic strata in the Sverdrup Basin. There exist many biostratigraphic studies of these strata, but they tend to be piecemeal and zonation based. Bringing all the data together, plus the generation of new data for this purpose, will provide a significant advance in the understanding of the geological history of the Canadian Arctic, and will involve events based on multiple fossil groups, as well as on geochronology and geochemistry.

Four Billion Years, four hundred weeks and four hundred people (give or take): the story of a popular book on the geology of Canada

In 2003, based on several factors, including success of a previous book, The Last Billion Years, on the geology of the Maritimes, we proposed the idea of a popular book on the geology of Canada. The early planning stages involved a special session at the GAC/MAC conference in Halifax in 2005, shortly after which we consolidated an editorial board of seven geologists and a group of experts across the country to pull together regional and topical stories that we could ultimately weave together into a single narrative. Concurrent with the writing of regional and topical drafts, we proactively sought photographs to illustrate the story, funding for the book, and a publisher to produce it. It became compelling too that we needed also to have a French edition. By 2008, the project had been officially adopted by the Canadian Committee of the International Year of Planet Earth (2009). Through fund-raising efforts by this Committee and the generosity of the Canadian Geological Foundation, Nexen and other supporters, we accumulated sufficient funds to develop an English edition (Four Billion Years and Counting), a French edition (Quatre Milliards d’Années), and a bilingual website. By then too we had developed working agreements with two publishers, Nimbus for the English edition and Editions MultiMondes for the French, with the Canadian Federation of Earth Sciences co-publishing both. One setback was that by 2010 the manuscript was getting too large, so we had to reduce the text by about 40 percent, a surgery that was painful and caused delays but was ultimately beneficial. The book was now taking its final shape, with the text divided into three parts: Foundations (outlining geological fundamentals from a Canadian perspective); Evolution of Canada (unravelling the history of Canada’s land mass); and Wealth and Health (exploring the ways in which geology impacts our daily lives). The English edition was published in late September 2014 and the French in November 2014: the accompanying website is expected to go live in early 2015. Both editions are large format books, the English with soft cover and the French with hard. The books are packed with colour photographs, accessible graphics and lively artwork. Reactions from readers so far indicate that we are satisfying our target audience of interested non-specialists; and sales are progressing such that we will probably have to reprint the English edition in 2015.
Earth science education – shake it up!

MARThA E. GRANTHAM,
Natural Resources Education Centre, Nova Scotia Department of Natural Resources, P.O. Box 100, Middle Musquodoboit, Nova Scotia B0N 1X0, Canada <martha.grantham@novascotia.ca>

Few teachers have a background in science, let alone geology. So when topics about earth science are to be covered in the classroom, teachers often look for help to bring it to life. Geoscientists can translate the complex language of ‘geologese’ into the appropriate level for their audience, whether students or the public. It is well known that many in today’s society, especially youth, are disconnected from the natural world and where things come from. You can improve the earth science literacy of students and educators. Explore some hands-on, brains-on activities, demonstrations and experiments that will engage students in earth science topics, and suggestions about how to get the most out of your classroom visit. We will also cover the use of specimens, props, and the technology students’ love, and the value of taking it outdoors. You’ll discover approaches and techniques that will work with different learning styles, whether in the classroom, board room, or around the dinner table. Be prepared for some geology fun-damentals!

Preserving Collections

ROBERT G. GRANTHAM
26 Rockwell Drive, Stewiacke, Nova Scotia B0N 2J0, Canada <robert@grantham.com>

The natural sciences of biology and the earth sciences are based upon collections. Specimens provide the structure upon which all future studies are based. The scientific description of the first of its kind whether it be a fossil, mineral or biological specimen, provide the basis upon which all subsequent discoveries and descriptions are founded. Museums and universities have provided safe and secure places to store and make available these natural and intellectual treasures. In these decades of restrictive museum funding, severe cutbacks, and the tendency to create virtual representations, collections are threatened with their very existence, let alone collection expansion. This is a matter of international concern.

This presentation presents experiences with and insights into, earth science collections gathered over a 45 year career in industry, academia, museums, Foundations and the private sector.

A popular guide to the geology of publically accessible scenic sites in Nova Scotia, Canada

MARThA HICKMAN HILD 1 and SANDRA M. BARR2
1. Writer-Editor, Flatrock, Newfoundland and Labrador A1K 1C8 <mhhild@bellaliant.net> ¶ 2. Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada

Nova Scotia is well known for its scenic vistas and diverse geology; the link between those two facts is well known to geologists but much less so to the general public. Our goal in this project was to create a practical and engaging field guide for the bedrock geology of Nova Scotia, modeled closely on an existing field guide, the “Geology of Newfoundland: Touring Through Time at 48 Scenic Sites” authored by Hild and published by Boulder Publications. Its design—based on available research into reader needs and behaviours—was developed specifically to demystify the process of finding and understanding interesting rocks, while also providing substantive content for the well-educated, curious traveller. We visited numerous outcrops to evaluate their geotourism potential, wove the selected sites into a compelling narrative, and gathered all the details readers would need to feel confident, motivated, and knowledgeable on their geological outings.

Adult learners absorb information best when presented in a meaningful context, and for that reason units are sequenced to tell the story of Nova Scotia’s geologic past. A series of 4- or 6-page units describe how to find, explore, and understand 48 sites of geologic interest in Nova Scotia. The sites were selected for their scenic beauty, access, safety, geological significance, and to a lesser extent, geographic distribution. The sites are grouped into 3 sections: Foundations, Meguma, and Pangaea. The Foundations section features 16 main sites that tell the story of the ancestry and assembly of Laurentian and Gondwanan terranes. The Meguma section focuses on 15 sites illustrating turbidite sedimentation, deformation, and metamorphism. The remaining 17 sites in the Pangaea section cover the Carboniferous–Permian assembly of Pangaea and subsequent break-up and opening of the Atlantic Ocean.

The book uses language that is accessible and lively but not "dumbed down." Front and back matter provide basic information, context, and vocabulary: succinct but accessible explanations of geologic time, rock types, plate tectonics, and the history of the Appalachian mountains/Pangaea, as well as a glossary. Other features that facilitate easy use include detailed, foolproof travel directions, a separate Trip Planner cross-referencing the
Pennsylvaniaian fluvial channels influenced by vegetation in the Joggins Formation, Nova Scotia

ALESSANDRO IELPI1, MARTIN R. GIBLING1, ARDEN R. BASHFORTH2, AND CHINEMEREM I. DENNAR1

1. Department of Earth Sciences, Dalhousie University, Halifax, NS, B3H 4R2, Canada
2. Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC, 20560, USA

Riparian vegetation profoundly influences modern fluvial channels, depending on plant life-history strategies, tolerance to disturbance, and habitat drainage. Direct evidence for these dynamic relationships is usually cryptic in ancient deposits. We report evidence for interactions between rivers and in situ vegetation in the Lower Pennsylvaniaian Joggins Formation based on architectural analysis of channel bodies associated with exposed upright trees. Although this site selection imposes some bias, the case studies encompass fixed, meandering, and distributary channels originally up to 6 m deep, from poorly and well drained settings across a coastal to alluvial plain. Plant groups include lycopsids that preferred stable wetland settings, disturbance-tolerant calamitaleans, and slow-growing long-lived cordaitaleans.

Our observations suggest that vegetation was effective in stabilizing banks and bars and promoting aggradation. Lycopsids and calamitalean groves colonized the channel bed during periods of reduced flow, and mounds around upright trunks indicate that they nucleated bars after flow resumed. Bank-attached bars with lateral accretion sets contain upright trees, which may have stabilized inclined sediment surfaces, and trees between small distributary channels may have formed vegetated islands. In several cases, lycopsids rooted below the channel base project up into the channel fill and are enclosed in sediment mounds, implying that they survived avulsion and formed obstacles in active channels.

On channel cutbanks, upright lycopsids are tilted towards the channel, and early-formed rhizoconcretions are associated with deep cordaitalean root systems in the tops of channel fills. Both features imply that vegetation contributed to sediment stabilization. The predominance of in situ over transported plant remains suggests that these low flow-strength rivers had limited ability to erode and entrain large woody debris, especially for small channels with strengthened banks.

We infer that patterns of interaction between rivers and vegetation broadly resembled those of today. By the Early Pennsylvaniaian, rivers had moved from a geomorphic and biogeomorphic mode of operation into a fully ecological mode with prominent feedback loops between vegetation and fluvial processes. Vegetation is commonly poorly preserved in fluvial systems but should be incorporated into facies models for Pennsylvaniaian and younger formations, possibly also for some Devonian and Mississippian formations.

Multistage corona formation in Algonquin metagabbro: unravelling the metamorphic history of Grenvillian lower crust

**JILLIAN L. KENDRICK, REBECCA A. JAMIESON, AND GLENN G. CHAPMAN

Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2 <jl762042@dal.ca>

The petrology, chemistry, and time of intrusion of alkaline mafic bodies in the southwest Grenville Province have been used to differentiate between autochthonous and allochthonous domains in this region. In the allochthons, the characteristic mafic suite is a group of coronitic metagabbros, the Algonquin metagabbros, which intruded at approximately 1170 Ma. Metamorphism at ca. 1060 Ma produced spectacular coronitic textures between igneous olivine and plagioclase and between igneous Fe-Ti oxides and plagioclase. This study examines in detail one metagabbro body exposed as a continuous 150 m wide outcrop in a road-cut near Emsdale, Ontario. Corona structures in this body preserve the products of multiple stages of metamorphism. Three stages of corona formation have been identified, dividing samples into three types differentiated by their mineral assemblages and textures. In Type 1 samples, which have the best preserved igneous texture, pseudomorphs after primary olivine are separated from plagioclase by coronas of orthopyroxene ± clinopyroxene, amphibole ± biotite, garnet + amphibole ± clinopyroxene ± orthopyroxene ± plagioclase symplectite. Coronas surrounding Fe-Ti oxides include amphibole + biotite and garnet + amphibole ± clinopyroxene ± orthopyroxene ± plagioclase. With increasing retrogression in Type 2 samples, relict igneous plagioclase and clinopyroxene are progressively recrystallized, mafic phases are progressively replaced by amphibole, and a sodic plagioclase moat appears between amphibole and garnet. Highly retrogressed Type 3 samples retain little to no igneous texture, with coronas largely obscured by late amphibole and
plagioclase. Petrographic and electron microprobe analyses are currently underway to determine the metamorphic reactions and P-T conditions recorded in the corona products at each stage. Preliminary P-T estimates for corona assemblages in Type 1 samples, assumed to represent peak metamorphism, are ~900°C and ~13 kb, and Type 2 and Type 3 estimates are in progress. Placing constraints on the P-T conditions for the three types will reveal a P-T path of metamorphism for the metagabbro body and shed light on its metamorphic history.

Magmatic-hydrothermal ore-forming systems: Products of resurgent boiling, fluid focusing and changing PTX conditions

DANIEL J. KONTAK

Department of Earth Sciences, Laurentian University, Sudbury, Ontario P3E 2C6 <dkontak@laurentian.ca>

High-level magmatic-hydrothermal ore systems cover a large range in terms of the progenitor magma, tectonic setting, and metal endowment (e.g., Cu, Mo, Sn, W, Au, rare metals). However, all these ore systems share a common feature, this being they are the end product of ore metal precipitation from fluids generated due to volatile saturation of evolving melts through the processes of first and second, or resurgent boiling. This latter stage of magma evolution is critical to ore-deposit formation since it is the vehicle by which metals are transferred from a metal-rich melt to a fluid under conditions of favourable elemental partitioning (i.e., $K_{D}^{\text{fluid/melt}} > 1$). The preservation of both melt and fluid inclusions in, for example, mafic-ultramafic cavities provides direct evidence of this process and confirmation of fluid-metal enrichment. The subsequent focusing of this metal-rich fluid into sites undergoing transient changes in PTX leads to metal precipitation; a variety of mechanisms are possible, such as fluid:rock interaction (e.g., greisens, skarns) or fluid mixing or unmixing. In this presentation, a range of textures (e.g., mafic-ultramafic, USTs, breccias) preserved in samples from a variety of ore settings are used to illustrate these important ore-forming processes, commencing with melt saturation and fluid exsolution, which can be either passive or catastrophic depending on the ΔP, through fluid focusing and ore formation. In order to illustrate these processes in further detail, two case studies are used: (1) the 380 Ma East Kemptville greisen-hosted Sn-Cu-Zn-Ag deposit which is related to the extreme fractionation of a F-rich and volatile charged felsic magma that, due to second boiling, generated a metal-rich mineralizing fluid. This fluid was subsequently focused along the faulted contact between topaz leucogranite and sediment where greisen formation controlled cassiterite precipitation; and (2) the Cretaceous Mongolian topaz ongonites that are spatially associated with rare-metal mineralization. These topaz-two feldspar dike rocks record preservation of primary igneous textures and have been considered by some as pristine examples of metal- and F-rich felsic melts. However, detailed mineralogical and isotopic studies indicate these rocks record a pervasive metasomatic event due to reaction at high temperature (ca. 400°C) with fluids of both magmatic and meteoric origin. The latter observations suggest some rare-metal enrichment in evolved felsic rocks, such as the ongonites, is secondary rather than primary magmatic, as considered by many, which has implications for genetic models for these systems.

Boundary|Time|Surface: Art and geology meet in Gros Morne National Park, NL, Canada

SYDNEY LANCASTER and JOHN W.F. WALDRON.

1. Harcourt House Artist Run Centre, Edmonton AB T5K1M7, Canada <sydney.lancaster@gmail.com> ¶
2. Department of Earth & Atmospheric Sciences, University of Alberta, ESB 1-26, Edmonton AB T6G2E3 Canada

Environmental Art works range in scope from major permanent interventions in the landscape to less intrusive, ephemeral site-specific installations constructed from local materials. Despite this range of intervention, these works share a tradition of art-making in which the artwork responds directly to its environs. Andy Goldsworthy and Richard Long, for example, favour methods that combine sculpture and performance in the creation of non-permanent interventions in the landscape, and both rely upon photographs, text, or video as the only lasting record of the works’ existence.

Similarly, Earth Scientists are responsible for interventions in the landscape, both physical and conceptual. In Earth science, the systems of the geologic timescale - Cambrian, Ordovician, etc. - were established by 19th century geological pioneers, who believed them to represent natural chapters in Earth history. Since the mid-20th century, stratigraphers have resolved ambiguities in the original definitions by defining stratotypes: sections of continuously deposited strata where a single horizon is chosen as a boundary. One such international stratotype, marking the Cambrian-Ordovician boundary, is defined at Green Point in Gros Morne National Park, Newfoundland.

Boundary|Time|Surface was an ephemeral sculptural installation constructed in June 2014. This artwork was a fence of 52 vertical driftwood poles, 2-3 m tall, positioned precisely along the boundary stratotype horizon at
Green Point. It extended across a 150 m wave-cut platform from sea cliffs to the low-water mark, separating Ordovician from Cambrian strata. The installation was hand-built (with volunteer assistance) on June 22, on the falling tide, and was dismantled by wave action and the incoming flood tide. The cycle of construction and destruction was documented in video and with time-lapse still photography.

This project provided viewers an opportunity to contemplate the brevity of human experience relative to time’s passage, and the fragile, arbitrary nature of human-defined boundaries of all types. Exhibitions of the installation documentation are envisaged, which will provide opportunities for direct interaction with still and video images of the work, both as aesthetic objects and as sources of information regarding the geological and human history of the site.

Mesh- and surface-based geophysical inversion of IOCG deposits

P.G. LELIÈVRE AND C.G. FARQUHARSON

Department of Earth Sciences, Memorial University of Newfoundland, St. John’s, Newfoundland, A1B 3X5, Canada
plelievre@mun.ca

Geophysical inversion is a data processing technique that calculates models of the Earth’s subsurface physical properties (e.g. density and magnetic susceptibility) from geophysical survey data (e.g. gravity and magnetic measurements). Inversion provides the means to integrate geophysical measurements, petrophysical data and other geological information. Standard mesh-based inversion strategies discretize the Earth region of interest into a mesh of space-filling cells, for example a 3D rectilinear mesh comprising prisms. The relevant physical properties are assumed to be uniform within each cell but possibly different from one cell to the next, creating pixelated models. The inversion attempts to determine a distribution of the relevant physical properties that could have given rise to the measured survey data. The numerical data-fitting problem is highly non-unique, meaning there are an infinite number of models that could fit the survey data to an acceptable degree. Common practice is to create a tractable inverse problem by accepting only smoothly varying distributions, a so-called “minimum-structure” approach. Models recovered through a minimum-structure mesh-based inversion approach are often at odds with existing geological knowledge of the subsurface. Geologists' interpretations about the Earth typically involve distinct rock units with contacts (interfaces) between them, each unit having essentially homogeneous physical properties. While there are mesh-based inversion methods that can produce models closer to that character, we are also developing a fundamentally new and different type of inversion that works directly with a 3D geological Earth model comprising wireframe contact surfaces of tessellated triangles. This parameterization is sufficiently flexible to allow the representation of arbitrarily complicated subsurface structures. The inversion moves the contact surfaces as required to fit the data, while honouring any a priori geological knowledge.

We are applying both our mesh- and surface-based inversion approaches to investigate Iron Oxide Copper Gold (IOCG) type deposits in South Australia. Preliminary results using gravity and magnetic survey data have produced subsurface models consistent with current understanding of the deposits.

Petrogenetic controls on gold mineralization within the Amber Zone at Cantung W mine, NWT

*CARLIN P. E. LENTZ1, CHRIS R.M. MCFARLANE1 AND HENDRIK FALCK2

1. Department of Earth Sciences, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada <carlin.lentz@unb.ca>
2. Northwest Territories Geoscience Office, PO Box 1320, Yellowknife, Northwest Territories X1A 2L9

The Cantung W-Cu-Au skarn is located within the Canadian Cordillera in the Northwest Territories approximately 400 km northeast of Whitehorse, Yukon Territory. It is related to an intrusive system that is part of Middle Cretaceous felsic plutonic suites that were emplaced into Neoproterozoic rifted margin and Paleozoic passive margin rocks bordering Laurentia. The deposit consists of a contact metasomatic hydrothermal system associated with a peraluminous biotite monzogranite that intruded into Lower Cambrian marble sequences, producing a zoned array of anhydrous and hydrous reduced skarns. There are several orebodies in the deposit, including the E-zone, the Pit, and the Amber Zone. The spatial and temporal relationship between the different zones is unclear.

Previous studies which investigated the gold mineralization in the E-Zone found no native gold or electrum. Spearman’s Rank correlation coefficients (r) were calculated using whole-rock lithogeochemistry of samples from the E-Zone ore body (n=48); a strong correlation between Au and Bi (0.76), Ag (0.70), Fe (0.64), and Cu (0.64) was identified. LA ICP-MS analyses of native Bi showed it did not contain anomalous gold concentrations. Bi- and Ag-tellurides and sulfosalts were found to be associated with the native bismuth; LA ICP-MS raster analyses detected highly elevated gold concentrations (800-1000 ppm) at the boundaries between alloy
and sulfosalt minerals, which corresponded with high Ag peaks. The correlation between gold and bismuth suggests that low temperature bismuth melts played some role in the enrichment of gold in this system.

Samples taken from the Amber Zone also contained elevated gold concentrations (1 sample >10 g/t and 7 samples > 1g/t). Petrography of polished thin sections from these samples was conducted to characterize the ore and gangue minerals from these high grade samples and mineral paragenesis determined. No native gold or electrum was observed in these samples either. The textures exhibited by native bismuth in these samples suggest they formed as low-temperature melts. These low-temperature melts mainly formed native bismuth; however Bi-Te-Se, and As-bearing phases also exsolved from these melts. Characterization of these Bi-bearing phases was conducted using SEM-BSE imaging and SEM-EDS analyses. The FEG-SEM was used to obtain more quantitative analyses on the small (<2-3 µm) Bi-Te-Se- and As-bearing phases. The objective is to use in situ LA ICP-MS analyses to determine the phases that host gold in the Amber Zone. Understanding the elemental associations at the mineralogical level will ideally provide vectors towards higher gold grades within this complexly zoned polymetallic skarn system.

The role of thermal constraints in extreme fractionation of felsic magmatic systems: examination of critical controls to protore and (or) ore formation

David R. Lentz, Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada <dlentz@unb.ca>

Extreme fractionation is evident in many magmatic systems including evolved felsic magmatic systems. Although considerable focus in the literature has been on volatile complexing (alone) in explaining metal enrichment in magmatic systems, only a few researchers conduct experiments and highlight field studies presenting primary magmatic processes as responsible for generation ore-forming systems in various granitoid magmas. The behavior of incompatible elements during partial melting and (or) fractional crystallization is well known, although the effects of the duration of a magmatic system from a thermal perspective is very rarely considered. It is postulated that the efficiency of crystal-melt partitioning and crystal-melt separation is very much a function of the duration of a cooling system. Using thermal modeling techniques, various magma injection scenarios were examined, in particular mafic magmas cogenetically emplaced with felsic magmas, to illustrate the range in cooling times for fractionating magmatic systems. The thermal energy modeling was done using the program HEAT by Ken Wohletz (Kware). This program is versatile and enables input of variable thermal gradients, and emplacement of different timing of intrusions into any package of rocks. It is easily shown that the duration of crystallization of felsic magmatic bodies can be easily extended by >> 10 times, such that crystallization from a typical granitoid solidus temperature of 700°C to << 600°C could be over 1 million years, which could overcome the viscosity issues with crystal fractionation at very low temperatures. If correct, any system can now be geochronologically be constrained by dating each phase of a magmatic system, and associated ores formed, i.e., the importance of thermal models can be tested in ore systems. The specific purpose of which is to determine the lengths of times that specific magmatic systems were above their liquidus through to their lower-most solidus and in terms of extreme fractionation to very evolved magmatic systems like Li-Cs-Ta (LCT-type), Nb-Y-F (NYF-type), Sn, Mo, U, and LREE apogranitic to granitic pegmatite systems to extremely low T’s consistent with each of their solidi, i.e., well below 600°C. Partitioning of elements between crystal and melt thus approaches ideal distribution coefficients for incompatible elements. As well efficient crystal – melt separation (Rayleigh fractionation and partial melting) in increasingly viscous magmas has time to separate and migrate promoting fractionation and concentration of fluxing volatiles in those derivative melts. Furthermore, prediction of economic potential of a particular felsic magmatic system is possible by appropriate thermal modeling of these magmatic systems.

Sediment disturbance due to storm wave action on a steep, mixed sand and gravel beach on the Bay of Fundy

WINSON LI¹ AND **ALEX HAY**²

1. Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
 <Winson.Li@Dal.ca>
2. Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada

Little work has been conducted on mixed sand and gravel (MSG) beaches compared to their single sediment type counterparts, although they are a common occurrence on Canada’s shoreline. Our study site, Black Rock Beach, is a planar steep MSG beach with a 1:7 slope. The site is situated on the northern side of the Minas Passage, in the Bay of Fundy. The purpose of this study is to contribute new understanding of MSG beach dynamics. More specifically we aim to examine how waves and currents affect the beach profile and the depth of sediment reworking during storms. Understanding the interaction between sediment and incoming waves at this site is important due to the
potential for power generation in the Minas Passage. Because power will be brought to shore via cables buried in the
beach, the depth of burial must exceed the maximum depth disturbance.

An array of equally-spaced depth of disturbance rods with free-sliding washers were deployed normal to
the shoreline up the beach face. The array records the maximum depth of sediment activation and relative changes in
bed elevation. Pressure and temperature data were logged by two submersible dual-channel loggers. Weather data
were collected from a weather station 200 m north of the study area. Post-tropical-storm Arthur was the only wave-
generating event to have significant effects on the beach during our study from July 4 to September 5, 2014. The
storm, with winds up to 100 km·h⁻¹, produced significant wave heights of about 1 m. The maximum DOD was 42.5
cm ± 0.2 cm near the high-water line, values decreasing down the shoreface to about 9.8 cm ± 0.2 cm near the low-
water line. An increase in relative beach elevation was recorded, with values of about 18.6 cm ± 0.2 cm closer to
high-water and about 1.1 cm ± 0.2 cm closer to low-water. Calmer conditions persisted through the rest of the
study, resulting in much lower DOD values, 5 cm or less, and following a similar trend of decreasing values down
the shoreface.

Using pancakes and Plexiglas® to teach geology
JASON LOXTON
Department of Mathematics, Physics, and Geology, Cape Breton University, Sydney, Nova Scotia B1P 6L2 Canada
<jason_loxton@cbu.ca>

Although geoscience education researchers actively pioneer effective teaching strategies and technologies, which are
disseminated through formal scientific journals, most teaching advances are still made through trial and error by
frontline educators. These practical methods and insights are often shared only with immediate colleagues, if at all,
and are frequently lost upon retirement. This presentation shares two demonstrations that the author devised while
teaching introductory geology labs at Cape Breton University (non-majors, primarily Arts and Engineering
students). The first technique uses actual pancakes to teach stratigraphic principles, and the second utilizes dry erase
markers and a large Plexiglas® sheet to show the relationship between how structures are represented on geological
maps via map symbols and what those structures look like in three dimensions. In a follow up survey, students
strongly agreed that these two methods helped them understand and retain the concepts. These techniques are readily
transferable to secondary and lower grade levels. These two examples are shared with the hopes that other educators
will find them useful and to encourage AGS attendees to share their own hard-earned teaching tricks.

An examination of fractionation on a planetary scale: examples from meteorites
**ELIZABETH A. LYMER AND RICHARD COX
Department of Earth Science, Dalhousie University, Halifax, Nova Scotia, B3H 4R2, Canada <beth.lymer@dal.ca>

Carbonaceous chondrites are a type of meteorite that are thought to be the most primitive and undifferentiated
material in our solar system, and therefore can provide a better understanding of the early history and evolution of
our solar system. Geologists have extensively studied the carbonaceous chondrite Allende CV3 since its observed
fall in 1969, providing a foundation of geochemical and petrologic data. Chondrites are defined by small spherical
aggregates of minerals called chondrules. Many questions about the formation of chondrites and chondrules remain
unanswered, and the genetic relationship between meteorites and other bodies such as planets are only speculated.
Planets such as the moon are achondrites, formed by partial melting and are considered to be differentiated material.
This research will attempt to show a relationship between chondrules in Allende CV3 meteorite to that of Lunar
samples and Komatiite samples from Earth using distribution coefficients and phase distributions. Chondrules
within Allende are treated as individual rocks, which can be grouped based on mineral constituents. Phase
distribution maps are created using the electron microprobe and determine bulk composition of 8 different
chondrules in Allende. The spectra of major elements in chondrules are overlapped to give a visual representation of
phase distribution. Distribution coefficients or more simply the ratio of element concentration in a single mineral to
the concentration of the element in the whole rock will be calculated using weight percent of specific elements in
olivine, pyroxene and plagioclase in the meteorite, Lunar and Earth samples. Distribution coefficients for major,
minor and trace elements will show trends in fractionation providing an evolution of material from primitive
chondrites to earth-like material. Chondrules from Allende will be analyzed and compared to known petrologic
types on earth, to better understand chondrule formation and processes. A genetic relationship between chondrites
and achondrites could be formed using distribution coefficients. Comparing the geochemistry of chondrules in
Allende to that of known rock types on Earth and the moon could provide insight into the early history of our solar
system and the formation of chondrules and chondrites.
The Altan Nar carbonate-base metal gold-silver deposit, southwestern Mongolia

Michael A. MacDonald, Peter C. Akerley and Michael X. Gillis

Erdene Resource Development Corp., Suite 1480, 99 Wyse Road, Dartmouth, Nova Scotia B3A 4S5, Canada

<mmacdonald@erdene.com>

The Altan Nar deposit was discovered by Erdene in 2011 as part of a regional, grassroots mineral exploration program over southwest Mongolia. Since that time, Erdene has completed nearly 10,000 m of diamond drilling and 3,000 m of trenching and has established Altan Nar as a significant new Au-Ag-Pb-Zn mineralized system. The geology of Altan Nar is dominated by a series of andesite volcanic flows with several stages of late granitoid dykes (generally < 30 m wide) and andesite dykes (generally < 10 m wide), some of which intersect mineralized zones. Altan Nar extends over a 5.6 by 1.5 km mineralized corridor that is defined by a widespread Pb and Zn soil anomaly and is host to 18 target zones with near-surface Au-Ag-As-Pb-Zn geochemical anomalies. Mineralized zones are often associated with zones of phyllic alteration (i.e., quartz-sericite/muscovite-pyrite), up to 100 m wide. Drilling to date has identified several high-grade zones within broad zones of mineralization, including a five metre wide, near-surface intersection, that returned assay values averaging 17.7 grams per tonne Au, 69 grams per tonne Ag, and 4.6 % combined Pb-Zn. Au and Ag mineralization is mostly present in quartz breccia zones with characteristic multiple stages of brecciation, silicification and quartz veins. Quartz veins typically have comb, colloform and crustiform textures, although some late veins have chalcedonic quartz. Both low and high arsenic gold mineralization has been identified at Altan Nar. Preliminary work indicates that the low-As mineralization is widespread with high-As mineralization generally restricted to narrow zones thought to be related to late stage mineralization. Mineralogical investigations of As-rich samples indicate a complex ore and gangue mineralogy including gangue minerals quartz, mica, calcite, rhodochrosite and several Mn-bearing carbonate, oxide and silicate phases along with ore minerals including arsenopyrite, galena, sphalerite, chalcopyrite, pyrite, pyrrhotite, and tetrahedrite. Gold is mostly invisible, however, very small gold grains (0.001 – 0.004 mm) were observed in a few thin sections. Altan Nar is interpreted as a carbonate-base metal-gold deposit, a style of epithermal deposits that are the major gold producers in the southwest Pacific Rim region and includes the very large Porgera deposit (24 million ounces Au) of Papua New Guinea.

Peritidal cycles and paleoecology of a saline giant: the Early Carboniferous Windsor Group, Nova Scotia

Laura A. MacNeil¹, Peir K. Pufahl¹, Noel P. James², Melissa Grey³, Deborah M. Skilliter⁴, and Ken Adams⁵

¹. Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada <laura.macneil@acadiau.ca> ¶ ². Department of Geological Sciences and Geological Engineering, Queen’s University, Kingston, Ontario K7L 3N6, Canada ¶ ³. Joggins Fossil Institute, 100 Main St. Joggins, Nova Scotia B0L 1A0, Canada ¶ ⁴. Nova Scotia Museum of Natural History, 1747 Summer St., Halifax, Nova Scotia B3H 3A6, Canada ¶ ⁵. Fundy Geological Museum, 162 Two Islands Rd., Parrsboro, NS, B0M 1S0, Canada

Evaporites and carbonates from Subzone B of the middle Viséan Windsor Group (ca. 340 Ma), Maritimes Basin, define brining-upward peritidal cycles that accumulated during a marine transgression. The exceptional preservation of evaporitic and fossiliferous facies provides a unique opportunity to investigate the formation of saline giants, which lack precise modern analogues. Saline giants are economically significant and hold important clues to understanding Earth’s climate evolution.

Stacked, decameter-scale peritidal cycles are composed of up to nine lithofacies that record progressive shallowing and increasing salinity. Cycles are defined by flooding surfaces overlain by fossiliferous or evaporite-rich lime mudstone that grades upward into massive anhydrite. This anhydrite is in turn overlain by massive halite or laminated siltstone that changes gradually into oolitic grainstone, microbialite, nodular anhydrite or red beds. The tops of peritidal cycles are marked by either the basal flooding surface of the next cycle or a karst diastem. Each aggradational succession is interpreted to reflect progradation of sabkha deposits over subtidal facies. The mosaic of lithofacies composing cycles is interpreted to record the effects of sub-basin geometry and evaporation, which controlled the degree of connectivity with the open ocean and water mass chemistry. Cycles from sub-basins with good connectivity to the open ocean lack massive halite and contain a high diversity assemblage of normal marine organisms that includes crinoids, brachiopods, byrophyans, and ostracods. Sub-basins with restricted circulation are characterized by cycles containing ubiquitous massive halite and a depauperate fauna indicating profound salinity stress.

The variability in facies composition between sub-basins demonstrates the heterogeneous character of some saline giants. Thus, depositional models that evoke evaporation to produce a single, large, stratified water mass from
which evaporites precipitate are overly simplistic. Understanding the complex nature of the Windsor Group has provided new information about the effects of climate, tectonics, and oceanography on the development of large evaporitic depositional systems.

Evolutionary trends of the Carboniferous ostracod *Velatomorpha altilis*, Joggins Fossil Cliffs, UNESCO World Heritage Site

REGAN MALONEY1,3, MELISSA GREY2, PEIR K. PUFAHL1, AND DON T. STEWART3
1. Department of Earth and Environmental Science, Acadia University, Wolfville, NS, B4P 2R6, Canada
2. Joggins Fossil Institute, 100 Main St, Joggins, NS, B0L 1A0, Canada
3. Department of Biology, Acadia University, Wolfville, NS, B4P 2R6, Canada

The ostracod *Velatomorpha altilis* thrived in brackish coastal environments of the Carboniferous. Especially well preserved examples occur in strata exposed at the Joggins Fossil Cliffs World Heritage Site, providing an opportunity to investigate the link between evolutionary mode and temporal changes in depositional environment. The relationship between the evolutionary mode of *v. altilis* and its environment is especially important since few other studies have examined evolutionary mode of organism living in marginal environments.

V. altilis was analyzed for evolutionary mode by measuring the length, height, width, area, and perimeter of valves from 332 specimens from 5 stratigraphic levels in the Boss Point and overlying Joggins formations. After quantitative model-based analyses, an unbiased random walk was supported as the evolutionary mode when ostracods from all 5 stratigraphic levels were included. Stasis was the suggested evolutionary mode only when ostracods from each formation were considered separately. This is consistent with other work on the evolutionary mode of *V. altilis* in the Joggins Formation.

Stasis is expected in fluctuating, stressed environments, such as the brackish coastal paleoenvironments of the Boss Point and Joggins formations. This is because organisms that inhabit those environments are usually tolerant to changing conditions. It is possible that between the formations an environmental threshold was reached that triggered rapid change in shell size. This represents a classic example of punctuated equilibrium wherein long periods of stasis are punctuated by geologically short periods of drastic morphological change.

Hydrothermal alteration of porphyry dykes related to Cu-Ag porphyry and skarn Mineralization in the McKenzie Gulch area, northern New Brunswick

RONALD J. MASSAWE AND DAVID R. LENTZ
Department of Geology, University of New Brunswick, P.O. Box 4400, New Brunswick E3B 5A3, Canada
<rmassawe@unb.ca; dlentz@unb.ca>

The McKenzie Gulch Cu–Ag skarn mineralization occurs in four zones: the Woden Brook occurrence (0.5% Cu over 6.0 m) to the northeast, the McKenzie Gulch occurrence (1.11% Cu and 10.63 g/t Ag over 0.50 m) and the Legacy skarn deposit (0.87% Cu in 1 500 000 t and 10.29 g/t Ag) in the middle, and the Burntland Brook occurrence (0.40% Cu over 10.2 m) to the southwest. These occurrences are localized between two northeast-trending, dextral strike-slip fault systems, the McKenzie Gulch Fault to the west and the Rocky Gulch Fault to the east. All four zones are hosted by carbonate-bearing sedimentary rocks of the Upper Ordovician through Lower Silurian Matapédia Group and spatially associated with northeast-trending Middle to Late Devonian intermediate to felsic dyke swarms.

Geochemical data indicate that the dykes are granodioritic to tonalitic in composition and have an I-type, volcanic-arc signature. Overall these data indicate a trend towards increasing SiO₂ and Zr with decreasing TiO₂, Al₂O₃, MgO, Sc, and V from the plagioclase-hornblende porphyry through to the quartz-plagioclase porphyry, and is consistent with evolution by fractional crystallization of plagioclase, hornblende, magnetite, and titanite. However, parallel fractionation arrays for Y, Zr, and Nb in the two suites indicate that the quartz-plagioclase porphyry fractionated from a related, but slightly different source than the hornblende-plagioclase porphyry.

Petrographic examination coupled with XRD analysis indicates that primary mineral composition (i.e., plagioclase, K-feldspar, biotite, hornblende), both phenocrysts and groundmass, have been partially or completely replaced by hydrothermal alteration assemblages dominated by calcite-sericite-illite, with subordinate chlorite and kaolinite. Minor pyrite occurs as disseminations and fracture filling. Trace amounts of hematite exist in veins and replacing pyrite. Molar element ratio analyses indicate alteration styles consistent with petrographic and XRD analyses.

As a result, these hydrothermal alteration assemblages can be summarized into: a) phyllic alteration that varies from weak to strong, and can be differentiated into two subgroups: i) quartz-sericite-pyrite assemblage that is characterized by the complete replacement of plagioclase-K-feldspar-biotite phenocrysts and groundmass; ii) weak
sericite-pyrite:illite assemblage that is characterized by the presence of weakly to unaltered plagioclase; b) weak propylitic alteration, but moderate to strong along contacts with skarn, and along joint-like fractures and hydrofractures. This alteration style is characterized by partial to complete replacement of plagioclase-hornblende-biotite by chlorite-illite-calciteepidote. Thus, variations and distributions of these alteration assemblages reflect several important variables including degree of alteration, and nature and composition of protolith.

Carboniferous volcanic rocks in the Picadilly Mine, Sussex, New Brunswick

Christopher R.M. McFarlane¹, Brian Roulston², and Colin MacDonald³

1. Department of Earth Sciences, University of New Brunswick, 2 Bailey Drive, Fredericton, New Brunswick E3B 5A3 <crmm@unb.ca> ¶ 2. Potash Corp (retired), Sussex, New Brunswick E4E 5L2 ¶ 3. Potash Corp, Sussex, New Brunswick, E4E 5L2

Recent mining activities in the PCS Picadilly potash mine, southeastern New Brunswick revealed the existence of disrupted, finely laminated buff- to reddish-brown layers hosted near the top of the basal anhydrite unit (Upperton Formation) of the lower Carboniferous evaporite sequence (Windsor Group) in southern NB. The layers are characterized by millimeter-scale euhedral semi-translucent crystals set in a fine-grained matrix locally interrupted by fragmental textures defined by lenticular and more deeply coloured reddish clasts up to 2 cm in length. These layers are distinctively different from other finely-laminated grey- and grey-brown siliciclastic horizons in the deposit.

Petrographically, the fine-grained matrix can be seen to be composed of large (1-2cm) mattes of optically continuous carbonate and anhydrite and exhibits a foam-like texture defined by 50-200µm flattened ellipsoidal features that resemble variably squashed ‘bubbles’ and cusptate bubble fragments. These fragmental textures are reminiscent of ash-fall tuffs whereas more coherent masses of intact bubbles resemble perlitic fractures in glassy volcanic flows. Scanning electron microscopy revealed individual ellipsoidal domains to comprise an outer rind of a K-Al-Mg silicate mineral whereas the inner domains are either carbonate or halite. The matrix also contains exotic REE-minerals such as chevkinite. Euhedral fluorite and zircon crystals were also locally identified in the matrix.

The larger euhedral minerals visible in hand sample were identified as quartz and altered sanidine.

Cathodoluminesence imaging of fresh quartz grains revealed faint oscillatory zoning, again reminiscent of igneous phenocrysts. The U-Pb age of zircon in the sample was measured using in-situ LA-ICP-MS. A total of 5 zircon grains in 3 samples yielded a range of Pb/Pb ages and generated a semi-total Pb/U isochron with a lower intercept of 335 ± 8 Ma. The Pb²⁺-corrected data are near-concordant with a spread of U/Pb ages ranging from 349 Ma to 333 Ma and a weighted mean age of 338 ± 9 Ma.

These results point to the origin of these rocks as tuffs, with U-Pb zircon ages that overlap within error the episode of peralkaline felsic volcanism documented in the Cumberland Hills rhyolite, east of Grand Lake, NB. Whereas the phenocryst assemblage and volcanic eruption ages are well preserved, the silicate matrix has been almost completely replaced by a mixture of carbonate and halite while preserving the intricate details of volcanic glass shards and perlitic fractures. The nature and physical conditions attending this replacement process are still under study.

A paleoenvironmental and paleogeographic reconstruction of the Terminal Archaic - Woodland Boswell site, Kingston, Nova Scotia.

Erin McKee¹, Michael Deal² and Ian Spooner³

1. Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada <108127m@acadiau.ca> ¶ 2. Department of Archaeology, Memorial University, St. John’s, Newfoundland and Labrador A1C 5S7, Canada

The Boswell archaeological site is located near Kingston, Nova Scotia on farmland next to the Annapolis River. Despite being the area of earliest European occupation in Canada, very little is known about Pre-Contact occupation along the Annapolis River drainage system. This has long puzzled local archaeologists, as the Annapolis River is an obvious travel route to the interior, and a large (2130 km²) watershed rich in plant and animal resources. However, in 2009 artifacts were found at the location which has subsequently revealed a complex history of site development. Excavations at the site have uncovered potsherds, lithics and ecofacts which collectively indicate Terminal Archaic to Late Woodland occupation. Ecofacts from the site suggest that beaver hunting and fishing took place, along with the collection of various edible berries and nuts. Although the site was likely intermittently occupied from the Terminal Archaic to the Late Woodland (ca. 3800 -1000 BP), the environmental and ecological conditions which made this location appealing for native occupants are unknown.
High resolution paleoenvironmental data from wetland and lake records in southwestern Nova Scotia indicate that at about 3000 BP forest composition changed rapidly as cooler and moister conditions developed. At this time hemlock became a more significant component of the forest cover in the region. From 3000 BP till 1000 BP, cool and moist conditions were punctuated by occasional droughts. The Boswell site is located on one of the few reaches of the Annapolis River that experienced little lateral migration in the last 3000 years, a condition which facilitated site preservation. The river terrace at the excavation site was formed by 3000 BP in response to both an increase in river discharge and a prominent bedrock sill which aided sediment aggradation. A prominent depression in the sill about 20 m upriver from the site has created one of the few large, deep (> 3m) pools along the stable reach of the river and may have been a harvesting site for migrating fish species including shad, alewife, brooktrout and smelt all of which were thought to be important resources.

Collectively, forest composition, which aided in bank stability, increased river flow which facilitated fish occupation and migration, bank stability and the presence of a harvesting site nearby may have made this site desirable for continued seasonal use over a long period of time. Recent erosion at the site appears related to development both upstream and downstream from the Boswell site.

Magmatic evolution of the Late Devonian Mount Douglas Leucogranites, southwestern New Brunswick, Canada; an example of extreme fractional crystallization

*NADIA MOHAMMADI AND DAVID R. LENTZ
Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
<nadia.mohammadi@unb.ca>

The Late Devonian Mount Douglas intrusive suite (MD, ≈600 km²) of southwestern New Brunswick, Canada, eastern part of the Saint George Batholith, is a suite of peraluminous leucogranites extended from Red Rock Lake to Mount Douglas. Extreme fractional crystallization associated with formation of this suite is the most important factor affecting the magmatic evolution, producing three compositionally and chronologically different intrusive units, Dmd1, Dmd2, and Dmd3. Petrochemical data show that the subunits of the Mount Douglas Granite have within-plate geochemical character with evidence of hybrid I- and S-type affinity. Very low K/Rb (average 102.7), Nb/Ta (≤ 6.8), and Zr/Hf (≤ 37.45) ratios in Dmd3 compared to Dmd1 possibly reflect significant involvement of extreme low T crystal fractionation in the last-stages of magmatic differentiation; The continuous variation trends for many major and trace elements (e.g., Zr vs. TiO₂, Zr/Hf vs. K/Rb, F vs. K/Rb, and Pb vs. Ba) suggest that probably Dmd2 and Dmd3 were generated by extensive fractionation of the parental Dmd1 magma. Also, normalized to the least-evolved sample of the MG granites (Dmd1), the Dmd3 unit is the most enriched in Rb, Th, U, Ce, Ta, Pb, Nd, Sm, Dy, Y, Yb, and Lu, and depletion of Cs, Ba, Sr, P, Zr, Eu, and Ti content, reflects their production of the same parental magma by crystal fractionation from Dmd1 to Dmd3. A flat "birdwing shape" REE patterns with the most pronounced negative Eu anomalies and the lowest (La/Yb)_N (ranging from 1.7-7.4) ratios of Dmd3 show the highly evolved attributes of Dmd3. Calculation of zircon saturation temperatures supports an interpretation of crystal fractionation from Dmd1 to Dmd3. Estimated average temperatures using the bulk rock Zr composition for Dmd1, Dmd2, and Dmd3 range 747-826°C, 733-817°C, and 729-816°C, respectively. All above data suggest that they might have a single genetic group with different fractionation originated from a homogenous parental magma, in which this fractionation increases from the early unit (Dmd1) to the latest unit (Dmd3); significant mineral occurrences, such as Sn, W, and Mo, seem to be mostly associated with the latest and most highly differentiated Dmd3 intrusive phases.

Salt water intrusion within a Carboniferous sandstone aquifer at Richibucto, New Brunswick as revealed by hydrogeophysical and petrophysical investigations

ERIC B. MOTT AND KARL E. BUTLER
Department Earth Sciences, University of New Brunswick, P.O. Box 4400, Fredericton, New Brunswick E3B 5A3, Canada <eric.mott@unb.ca>

Hydrogeophysical surveys have been carried out in the vicinity of Richibucto, New Brunswick, as part of a project to assess the risk that salt water intrusion along the Northumberland Strait could increase over time as a consequence of climate change and rising sea level. The surveys involved electrical resistivity imaging (ERI) measurements along several lines extending inland from the coast in conjunction with geophysical logging of two new and several pre-existing boreholes. The investigation indicates that the elevated salinities that have intermittently affected Richibucto’s municipal wellfield are likely a consequence of salt water upcoming beneath pumping wells. Evidence of a salt water wedge extending approximately 200 m inland was also observed beneath one ERI line acquired in a
particularly low lying area adjacent to Richibucto Harbour. The results illustrate that ERI surveying can be an effective tool in identifying the extent and modes of salt water intrusion in Carboniferous sandstone aquifers that supply water to many coastal communities along the Northumberland Strait coast. Data interpretation is, however, complicated by the presence of relatively thin, discontinuous layers of electrically conductive shale.

With core recovered from boreholes, a relationship was established in the laboratory between the bulk conductivity of rock samples and their pore fluid conductivity. With this relationship, along with a relationship of chloride concentration to water conductivity acquired from water sampling, it was possible to estimate in-situ pore water salinity from borehole resistivity measurements.

Reconciling mutually incompatible models for the tectonostratigraphic zonation of the Variscan Orogen in western Europe

J. BRENDAN MURPHY¹, CECILIO QUESADA² AND GABRIEL GUTIERREZ ALONSO³

¹. Department of Earth Sciences, St. Francis Xavier University, Antigonish, B2G 2W5 Canada <bmurphy@stfx.ca>
¶ 2. Instituto Geológico y Minero de España (IGME), Ríos Rosas 23, 28003 Madrid, Spain ¶ 3. Departamento de Geología, Universidad de Salamanca, 37008 Salamanca, Spain

The Late Paleozoic Variscan orogen in Europe is widely acknowledged to be the result of convergence and collision between Laurussia and Gondwana during closure of the Rheic Ocean. The orogen is classically divided into a number of tectonostratigraphic zones that have a distinctive curvature (Ibero-Armorican Arc, IAA) and record different aspects of the Late Cambrian-early Ordovician opening of the Rheic Ocean and the migration of terranes from the Gondwanan margin towards Laurussia, as well as the tectonothermal events that accompanied the closure of that ocean and the development of the IAA. Although there is a general consensus that the curvature originated at some stage during the development of the Variscan orogen two models have emerged to explain the distribution of tectonostratigraphic zones:

(1) a consequence of indentation tectonics due to collision with Laurussia by a (Ibero-Aquitanian) promontory of Gondwana during the Devonian;
(2) development of the Cantabrian orocline at ca. 295 Ma at the inner core of the IAA, an interpretation supported by a wealth of paleomagnetic, structural and geochronological data.

These models have been viewed to be mutually incompatible because the former requires curvature along the Gondwanan margin prior to its ca. 400 Ma collision with Laurussia, whereas the latter requires that the tectonostratigraphic zones were linear prior to bending at ca. 295 Ma.

Recent sedimentological and structural data have rekindled the hypothesis that the Cantabrian Orocline is connected to a second orocline to the south (Central Iberian Orocline), highlighting the possibility that inner (Gondwanan) and outer (Laurussian) zones of the Ibero-Armorican arc may be structurally discordant with respect to each other, implying that the geographic limits of orocline formation are presently unclear.

The two models can be simply reconciled if the geography of Gondwana’s leading edge was irregular, but the tectono-stratigraphic zones remained approximately linear within the inner zones of the putative Ibero-Aquitanian indenter and (ii) deformation associated with initial collision was largely accommodated by sinistral (SW Iberia) and dextral (Armorican Massif) motion along shear zones on either side of the promontory.

Geochemical characterization of fine-grained Carboniferous strata of the Maritimes Basin Complex of New Brunswick

*ADRIENNE NOFTALL AND DAVE KEIGHLEY

Department of Earth Sciences, University of New Brunswick, P.O Box 4400, Fredericton, New Brunswick E3B 5A3, Canada <Adrienne.Noftall@unb.ca>

The Carboniferous Maritimes Basin Complex of New Brunswick is divided into six lithostratigraphic groups; the Horton, Sussex, Windsor, Mabou, Cumberland, and Pictou groups. Unfortunately, it is often difficult to distinguish units from each other; including some of economic importance such as the Horton Group. These difficulties include: restricted outcrop exposures, lithologically similar fine-grained strata in many units, a near complete absence of radiometrically datable materials, and reworking of rare microfossils throughout the succession. In other stratigraphic successions with similar complications, chemostratigraphic approaches have been used to help differentiate units. As for the Carboniferous of New Brunswick, little such geochemical data currently exists to aid in the differentiation of these units. Accordingly, 139 samples in total have been collected from fine-grained strata in outcrop and borehole representing each of the Carboniferous groups throughout the province. For each sample,
and additionally for reference standards, 55 elements were analyzed by Inductively-coupled-plasma and mass spectrometry (ICP-MS).

Broadly, the samples from each unit are geochemically all quite similar. However, several trends have been visually identified from preliminary analyses of the data that currently are being assessed through statistical analyses. For example, when ratios of $\text{Al}_2\text{O}_3:\text{TiO}_2$ are compared, the lower three groups (the Horton, Sussex, and Windsor) of the succession show strongly positive correlations and goodness of fit to the regression line (with R^2 values of 0.669, 0.5794, and 0.8536 respectively), whereas the groups higher in the succession (the Mabou, Cumberland, and Pictou groups) have an R^2 value of no higher than 0.15. When comparing plots of $\text{Na}_2\text{O}/\text{K}_2\text{O}$ against Zr/Cr, the Windsor and Cumberland groups display relatively strong negative correlations and goodness of fit to the regression line (R^2 values of 0.501 and 0.273 respectively), the Horton Group shows a weak positive correlation and goodness of fit (R^2 value of 0.104), while the rest show R^2 values of less than 0.090.

By further comparing the geochemical data collected from the finer-grained rocks of the Carboniferous Maritimes Basin, certain potential anomalies or trends seen throughout the groups of the succession may become apparent which can aid in a chemostratigraphic characterization of the Carboniferous of New Brunswick.

Stratigraphic constraints on Cambrian stratigraphy, Mira and Bras d’Or terranes, Cape Breton Island, Nova Scotia

TEODORO PALACIOS1, SOREN JENSEN1, SANDRA M. BARR2, AND CHRIS E WHITE3

1. Area de Paleontología, Facultad de Ciencias, Universidad de Extremadura 06071 Badajoz, Spain ¶ 2. Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada <sandra.barr@acadiau.ca> ¶ 3. Nova Scotia Department of Natural Resources, P.O. Box 698, Halifax, Nova Scotia B3J 2T9, Canada

Cambrian sedimentary rocks of Cape Breton Island, Nova Scotia, contain generally well preserved acritarchs recovered from the majority of the sampled levels. The data provide considerable additional age constraints to the largely siliciclastic successions from which earlier age constraints are sparse. Because the majority of acritarchs likely were cysts of planktic organisms they do not provide new insights into ongoing arguments on the paleogeographical configuration (and number) of terranes present within the Cape Breton Island. On the other hand, the recovery here of characteristic acritarchs that are also found in Baltica, and other regions enables fossil-based correlation for much of the succession, and a better control of the age correlation between different parts of Cape Breton Island. In fact, Cape Breton Island provides an exceptionally complete succession of Cambrian acritarch zones.

In the Avalonian Mira terrane, a low diversity assemblage with leiosphaerids, Granomarginata, and small ornamented acritarchs (Asteridium) have been recovered from the MacCodrum Formation north of Mira River. Although not age-diagnostic, this association and the absence of taxa indicating a younger age are consistent with an early Early Cambrian age. A late, but not latest, Early Cambrian association including Globosphaeridium cerinum and Skiagia ornata was recovered from the Canoe Brook Formation west of the Mira River. East of Mira River acritarchs are found in the Trout Brook Formation and are particularly well-preserved and diverse in the MacLean Brook and MacNeil Formations, including various species of Cristallinium, Stelliferidium, Timofeevia, and Vulcanisphaera. Our samples cast doubt on the existence of an Ordovician unit (McAdams Brook Formation) in the Coxheath Hills, which was erected based on an earlier report of Ordovician acritarchs. The recovered acritarchs rather suggest that these strata belong to the MacMullin Formation as was originally suggested.

In the Indian Brook area (part of the Ganderian Bras d’Or terrane) acritarchs were recovered from the Middle Cambrian Eskasoni, Dugald, and MacMullin formations in the south, and from the otherwise fossil-poor MacMullin Formation in the north. Our results support earlier evidence that the MacMullin Formation is largely contemporaneous with the MacLean Brook Formation, but indicate that the Dugald-MacMullin Formation transition is somewhat younger than previously interpreted, and potentially contains an hiatus.

In situ Gamma-Ray Spectrometry: a tool to examine the degree of fractionation of pegmatites in the Prosperous Suite, NWT

*EMILY M. PALMER1, DAVID R. LENTZ1, AND HENDRIK FALCK2

1. Department of Earth Science, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada <epalmer@unb.ca> ¶ 2. Northwest Territories Geoscience Office, Yellowknife, Northwest Territories, Canada

Exotic minerals, such as beryl, spodumene, and schorl, have been identified in LCT pegmatites located in the granitic plutons of the Prosperous Suite and surrounding supracrustal rocks of the Slave Province within a 40 x 50
kilometre zone north and northeast of Great Slave Lake. The presence of these minerals is typical of rare-element pegmatites that represent extreme fractionation. A gamma-ray spectrometer (GRS) was used in this preliminary study to measure the pegmatites, granites, and supracrustal rocks for K, equivalent U (eU), and equivalent Th (eTh). Uranium and Th are typically incompatible in fractionating magmatic systems and are used to evaluate general fractionation, which will constrain the search for their rare-element potential. This data, coupled with field observations, is used to examine the degree of fractionation seen in the pegmatites locally and regionally.

Sampling of pegmatites around four of the 14 Prosperous Suite plutons (Prestige, Prosperous, Sparrow/Hidden) was completed this past summer. A total of 225 pegmatite and 71 granite surface GRS measurements were taken at this time, ranging up to 236 ppm eU and 56 ppm eTh for pegmatites and up to 35 ppm eU and 45 ppm eTh for granites. The measurements were made using a handheld RS-125 Spectrometer equipped with a 2x2 NaI crystal detector with an integration time of 120 seconds. The measurements were taken along transects across zones of unweathered pegmatites and of surrounding unweathered rock.

In general, the pegmatites intruding the supracrustal rocks are more fractionated than those intruding the plutons of the Prosperous Suite. The transects across the zones of the pegmatites show an increase of eU and eTh when moving from wall zone to intermediate zone, and a decrease in the eU/eTh in the core. The metasedimentary sequence surrounding the Prestige pluton has multiple pegmatites with large beryl crystals (up to 10 cm in diameter). These pegmatites have abnormally high eU/eTh ratios. The pegmatites hosted in the pluton have low eU and eTh contents. These observations lead to the interpretation that the pegmatites intruding the metasedimentary sequence are more fractionated than those intruding the Prestige pluton. Pegmatites surrounding the Prosperous pluton have a low average eU/eTh ratio, suggesting a lower degree of fractionation; however, an outlier zone was identified at the Riber pegmatite. The pegmatites intruding both the plutons and supracrustal rocks in the Sparrow/Hidden area have the highest average eU and eU/eTh measurements, which coincides with an elevated content of beryl and spodumene in these pegmatites.

Southwestern end of the St Martins–Stewart Mountain high-strain zone: Big Salmon River–St. Martins area, southern New Brunswick

ADRIAN F. PARK1, SANDRA M. BARR2, CHRIS E. WHITTLE3, SUSAN C. JOHNSON4 AND GREG R. DUNNING5

The St. Martins-Stewart Mountain high-strain zone divides the Avalonian Caledonia Highlands, into a southeastern segment, where predominantly volcanic rocks of the upper Coldbrook Group overlie volcanic and sedimentary rocks of the older Broad River Group (both Ediacaran) and plutonic rocks of the Point Wolfe River suite (and related plutons); and a northwestern segment comprised of lower and upper Coldbrook Group volcanic and sedimentary rocks intruded by the contemporaneous Bonnell Brook and related plutons. The high-strain zone reaches the southern coast of New Brunswick between Little Salmon River and St. Martins with a series of southerly splays. Associated with the Ediacaran units in this area are enclaves of Cambrian Saint John Group, and a volcanic unit (Fairfield rhyolite) with a poorly constrained Devonian age.

Construction of the Fundy Coast Parkway has created extensive new outcrop in this problematic area, and detailed mapping and structural analysis show that tectonic enclaves of Saint John Group are intercalated with Coldbrook Group rhyolite and mafic rocks and minor sedimentary rocks. Both the Ratcliffe Brook and Glen Falls formations are present, and above them, in ascending order: 1. grey-green siltstone, sandstone and shale, with minor purplish-grey mudstone, and 2. grey to black mudstone and siltstone. These last two units may correlate with the Hanford Brook and Silver Falls formations, respectively. One problematic unit contains rhyolite intercalated with grey-green siltstone-shale and red-brown siltstone-sandstone. The contact is deformed but not completely transposed. The age of the rhyolite is unknown and dating will permit assignment either to the Cambrian Saint John Group or the Ediacaran Coldbrook Group.

New radiometric dating has resolved one problem: the age of the Fairfield rhyolite – now shown to be 620 Ma and most probably a wedge of Broad River Group between splays of the main shear zone. Another new radiometric age from a faulted block of mafic volcanic rocks along the coast, previously considered to be Coldbrook Group (Hosford Brook Formation) or Broad River Group (Haward Brook Formation), or Devonian-Carboniferous Lorneville Group, at 695 Ma is more problematic with no obvious correlates in the area.
All the rocks through this area previously assigned to the 'Seeley Beach Formation' of the Coldbrook Group, with the exception of the one problematic unit, are units of the Cambrian Saint John Group. The original relationship with Neoproterozoic rocks was an unconformity. Geometry of the tectonic enclaves is complex, but suggests partial entrainment into a right-lateral strike-slip duplex.

No tin deposits in Chile? Focus on one exception: the Belén -Tignamar district, Arica

NATHAN PIDDUCK AND MARCOS ZENTILLI

Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2; <nt267989@Dal.Ca; Marcos.Zentilli@Dal.Ca>

The Central Andes are rich in metal deposits associated with magmatism arising from subduction of oceanic lithosphere under South America. Bolivia, southern Peru and northwestern Argentina are rich in tin deposits associated with Paleozoic to Pliocene igneous rocks; yet coeval magmatic centres in immediately adjacent Chile rarely contain tin. One anomaly is the polymetallic Capitana deposit, Belén-Tignamar district, in the high Andes of Arica (18°35'S; 69°30'W). A unique specimen collected by M. Zentilli in the abandoned mine in 1963 is being used as a focus to review the question of why tin is so rare in Chile. Reportedly, a Capitana vein contained 7% Sb, 0.1% Ag, 5% Cu, 2.5% Pb, 11.8% Bi, and 4.7% Sn.

There have been many different hypotheses concerning the contrast between tin-rich Bolivia and tin-deprived Chile. Workers suggested that granitophile tin originated in anomalously tin-rich crust, or was remobilized from pre-existing tin concentrations. Differences in elevation and depth of erosion were considered to play a role. In the 1970s a popular hypothesis proposed that during subduction, tin was selectively distilled from subducted lithosphere, deeper and farther (east) than copper. More recently, experimental studies and chemical modeling have shown that when magmas evolve with low oxygen fugacity, such as when interacting with reducing carbon in the crust, Sn$^{2+}$ behaves as incompatible element and becomes enriched in hydrothermal fluids, whereas in oxidized magmas Sn$^{4+}$ gets incorporated in rock-forming minerals, and is thus dispersed. If the reduced stannous fluids encounter oxidizing conditions, tin is precipitated as cassiterite (SnO$_2$); in the presence of S, As and Sb, for example in epithermal Capitana, tin goes into sulphosalts.

The mineralogy and geochemistry of the ore specimen have been studied using reflected light microscopy, XRD, electron microprobe and bulk chemical analysis. The specimen has quartz, pyrite, sphalerite, (covellite), tetrahedrite-tennantite (Cu$_{12}$Sb$_4$S$_{13}$-Cu$_{12}$As$_4$S$_{13}$) and other sulphosalts. Chemically it contains 6.1% Cu, 0.5% Zn, 10% Pb, 4.8% Bi, 0.7% Ag, 0.05% Sn (predominantly in sphalerite), 3.5% Sb, 3.1% As, and is enriched in Hg (46ppm) and U (57 ppm; Th/U = 0.01).

The geological map may hold the clue to the existence of this unique tin deposit in Chile. Capitana is hosted by Mesozoic to Cenozoic volcanic rocks, and associated with a Tertiary porphyritic intrusive. A most unusual fact is that within the Belén-Tignamar district there are outcrops of an isolated, fault bounded inlier of the Belén Schist, a Proterozoic-Paleozoic gneissic complex of metamorphosed igneous and sedimentary rocks similar to those known from the crystalline basement of the Bolivian tin province.

Petrographic and chemical characteristics of mafic dykes and sills in the Antigonish Highlands, Nova Scotia

CELINE E. PORTER1, SANDRA M. BARR1, AND CHRIS E. WHITE2

1. Dept. of Earth & Environmental Science, Acadia University, Wolfville, Nova Scotia B4P 2R6
2. Department of Natural Resources, Halifax, Nova Scotia B3J 2T9, Canada

The Antigonish Highlands of northern mainland Nova Scotia have a long and complex tectonic history involving at least three major episodes of magmatism during the Late Neoproterozoic, Ordovician, and Devonian-Carboniferous. Mafic dykes and sills are abundant throughout the Antigonish Highlands, presumably related to one or more of these magmatic episodes. Dykes/sills have been observed at almost 200 locations, most in units older than the Silurian Arisaig Group. In Neoproterozoic stratified units, many of the sills were originally thought to have been flows. Wide variations in petrographic, magnetic, and chemical characteristics suggest multiple episodes of dyke/sill emplacement. Based on the petrography of 67 samples, two main types of sills and dykes are recognized: clinopyroxene-bearing and plagioclase porphyritic. The clinopyroxene-bearing group is subdivided into intergranular, coarse-grained, and secondary amphibole-bearing. Whole-rock chemical analysis of 33 of these dykes/sills shows that the majority are mafic (<52% SiO$_2$) but a few are intermediate with up to 55% SiO$_2$. Loss on ignition is typically high (ca. 5-10%) consistent with extensive alteration in the rocks, including saussuritization of plagioclase and replacement of pyroxene by chlorite. Both major and trace elements show wide variation, likely also linked at least in part to alteration, and correlations between chemical characteristics and petrographic
characteristics are not apparent in the existing data set, even when augmented by chemical data obtained using a portable XRF instrument. However, the dykes/sills appear to fall into two distinct chemical groups based on tectonic setting discrimination diagrams using mainly immobile elements: volcanic-arc and within-plate. Samples in the volcanic-arc group are subalkalic and show chemical characteristics similar to those of the Neoproterozoic volcanic and plutonic units of the Antigonish Highlands, generally interpreted to have formed in a subduction zone. The within-plate samples are subalkalic transitional to alkalic and show chemical similarities to the Ordovician within-plate Ordovician plutonic and volcanic units of the Antigonish Highlands. However, a number of subalkalic samples are ambiguous in their classification and/or plot in units too young for them to be Neoproterozoic. None of the samples examined in thin section seem unaltered enough or have petrographic features to suggest that they are related to the Devonian-Carboniferous magmatic events.

A cabinet of curiosities: treasure hunting in the collections of the Nova Scotia Museum and the importance of community engagement

ZABRINA M. PRESCOTT
Nova Scotia Museum, Halifax, Nova Scotia B3H 3A6, Canada <Zabrina.M.Prescott@dal.ca>

Provincial museums safeguard a wealth of cultural heritage. This cultural heritage includes specimens with incredible scientific and historical significance of interest at the regional, national, and global scale. Fostering this interest in members of the community is of the utmost importance as donations of specimens serve as important sources for artefacts. One such donation led to the acquisition of a portion of the collection of the Nova Scotia Museum’s first director and curator: Reverend David Honeyman.

When a gentleman purchased a small, glass-fronted cabinet filled with shells, shark teeth, and other curiosities at an estate sale in the 1970s, he hoped that it would encourage an interest in natural history in his children. Decades later in 2011, he rediscovered this lost treasure trove. Approaching the Nova Scotia Museum, this gentleman wondered if his cabinet was of interest to Nova Scotia’s cultural heritage. Little did he know that this little cabinet and its dozens of handmade cardboard trays full of fossilized clams, snails, coral, and teeth represented a portion of the collection used by Reverend David Honeyman when writing his book *Giants and Pigmies: Earth’s Order of Formation and Life and the Harmony of the Two Records*.

Among the material in this cabinet are several specimens that Honeyman collected or discussed during, or incorporated into displays at, the International Exhibitions of London (1862) and Dublin (1865) as well as the Universal Exposition in Paris (1867) and the Philadelphia Centennial International Exhibition (1876). These specimens include *Megalodon* teeth, giant sea snails, irregular sea urchins, and dozens of nummulitid foraminifera.

The acquisition of this collection offers several avenues for study beyond that of the evolutionary and geological history of the specimens. These specimens, and the pages of *Giants and Pigmies* corresponding to them, provide an opportunity to better understand specimen collection and fieldwork in the latter half of the 19th century, as well as the context for important international meetings from the 1860s-1880s. Likewise, this material can help improve our understanding of Honeyman himself, and of the origins of the Nova Scotia Museum. Finally, collections such as these help to encourage community engagement and enthusiasm about provincial natural history, further stimulating interest in provincial museum collections and, perhaps, encouraging further donations.

Long-term joint monitoring of self-potential and temperature with active thermometry for seepage surveillance at the Mactaquac Dam, New Brunswick

ANDREW RINGER, KARL E. BUTLER, KERRY T.B. MACQUARRIE, BRUCE G. COLPITTS, AND D. BRUCE McLEAN
1. Dept. of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada <kbutler@unb.ca> ¶ 2. Dept. of Civil Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada ¶ 3. Dept. of Electrical and Computer Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada ¶ 4. NB Power Generation, Mactaquac Generating Station, 451 Route 105, Keswick Ridge, New Brunswick E6L 1B2, Canada

A seepage monitoring study has been underway at the Mactaquac hydroelectric generating station as of April 2013 involving the joint monitoring of temperature and self-potential (SP) near the interface of an embankment dam and concrete diversion sluice way structure.

Two 50 m long boreholes were drilled in the concrete, parallel to the interface and ~0.5 m from the adjacent embankment core. Focused coverage of the interface was provided by fibre optic distributed temperature sensing (DTS) cables, heating cables, and 32 SP electrodes installed in the boreholes. In addition to the borehole instrumentation a 20 × 54 m surface electrode grid consisting of 30 SP electrodes were installed on the downstream
slope of the embankment close to the concrete structure. SP and DTS signals are recorded continuously at sample rates of 1 min and 30 min respectively in the ongoing experiment.

The SP response recorded by the surface electrodes has been analyzed over a 20 month period, and reveals to be a complex superposition of electrical potentials likely influenced by dam seepage, temperature, rainfall, telluric currents, head pond flow, freezing, and electrochemical reactions. Qualitatively, the SP responses during each freshet event and the annual seasonal cycle shows some reproducibility from year to year.

The upstream heating cables were activated for a 27 day period in July of 2014. The corresponding temperature response during heating and cooling was recorded in an attempt to identify areas preferentially affected by advective heat transfer. The temperature response from active heating agreed well with the known position of the water table and preliminary results from numerical modelling, and revealed an anomalous area in the saturated zone. However the irregular failure of one of the heating cables during the heating period necessitates that the experiment should be repeated.

Further work will require analysis and modelling of the long term seasonal variations of temperature, and forward modelling of the electrokinetic response due to bulk seepage, head pond currents, and preferential seepage pathways.

Ethics in geoscience: our integrity is at stake

Anne Marie Ryan¹ and Charly Bank²

1. Department of Earth Sciences, Dalhousie University, 1459 Oxford Street, Halifax, Nova Scotia B3H 4R2, Canada <amryan@dal.ca>
2. Department of Earth Sciences, University of Toronto, Toronto, Ontario M5S 3B1, Canada <charly.bank@utoronto.ca>

Ethics in geology is one of the most important aspects of geoscience today. It lies directly at the convergence of Earth sciences and society. In 2013, we distributed an online survey to a variety of geoscience-related organizations across Canada. Our intent was to: (1) determine the current state and understanding of geoethical considerations across the geoscience community; and (2) determine whether there was a need to more formally incorporate geoethics education into our undergraduate programs. Over 120 respondents with different levels of training, fields of expertise, and experience contributed anonymous responses to questions related to the following aspects of potential geoethical considerations: (i) scientific integrity; (ii) social responsibility; (iii) aboriginal issues; (iv) corporate ethics; and (v) fieldwork. The majority of respondents agreed that most categories identified were important considerations. A second section on the survey asked respondents to identify from a list given, suspect behaviours they had observed in the working geoscience environment. Over 60% of respondents indicated they had observed biased representation of information and failure to give credit to the author or originator of an idea; over 40% of respondents also indicated they had observed abuse of power by a supervisor, degradation of persons for reasons of gender, minority / race, or sexual orientation, potential conflict of interest, and private land access without permission.

A third section sought to determine how and where geoscientists learned about geoethics, and whether they believed their undergraduate education prepared them to make the ethical decisions they faced in their workplace. Discussions with peers and independent reading were the dominant means for learning about geoethical considerations, and less than 35% of respondents indicated that their undergraduate program prepared them for ethical decision-making in geoscience. These findings collectively speak to an urgent need to address geoethical issues in our undergraduate programs. We are currently in the process of developing materials for wider distribution and welcome ideas and suggestions as we develop these *geoethical principles* materials.

A soil geochemical survey of Fredericton, New Brunswick, Canada

DANIEL G. SÉNÉCHAL AND BRUCE E. BROSTER

Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick E3B 5A3 <Daniel_Gilles.Senechal@UNB.ca>

A total of 101 locations were sampled as part of a soil geochemical survey of the downtown urban centre of Fredericton, New Brunswick. The city obtains ~95% of its potable water supply from an aquifer mostly confined by a discontinuous clay-silt aquitard underlying the urban centre. The aquitard contains “windows”, which could allow contaminants into the aquifer; hence, the focus of this study.

The area, which has been the provincial capital since 1785, occupies a broad floodplain located between the Saint John River and higher bedrock terrain to the west. Two samples were obtained at most sites, an ‘A’ sample collected at a depth of approximately 10 cm and, where possible, a ‘B’ sample collected at a depth of approximately...
30 cm. Till samples were collected from areas of higher elevation where the terrain has been less disturbed by natural or anthropogenic activity. Samples <63 μm (230 mesh) were analyzed by Instrumental Neutron Activation Analysis (INAA) or Inductively Coupled Plasma Analysis (ICP) in order to determine elemental concentration for 50 elements. Five elements, As, Cr, Ni, Pb, and Zn, were found to exceed the Canadian Council of Ministers of the Environment (CCME) soil content guidelines for ‘A’ samples collected in the downtown area. For example, of this sample group 100% of the samples exceeded CCME guidelines for Cr soil concentrations, by 1.7 times the recommended limit of 64 ppm, and approximately 89% of this sample group exceeded the CCME guideline limit of 12 ppm for As soil content by 2.6 times. Concentrations of 34% of the sampled population for Pb were also found to be 2 times greater than CCME recommended soil content of 140 ppm. One particular downtown location demonstrates anomalous concentrations of all five elements and the history of anthropologic activities at that site are presently being investigated.

Topography and elemental mobility are interpreted to represent a major factor in the dispersion of the elements. The till ‘B’ samples displayed higher elemental concentrations than the ‘A’ samples; likely due to weathering and element mobility. Samples from the downtown area were collected from re-worked fluvial floodplain sediments that demonstrated much higher elemental concentrations in the ‘A’ samples in comparison to the underlying ‘B’ samples. The higher concentrations of some metals in the near-surface soils are interpreted to be caused by long-term anthropological activity in the urban centre.

Sedimentology and taphonomy of the plant-bearing beds of the Colwell Creek Pond site in the Early Permian Clear Fork Group of north-central Texas

SHARANE S. SIMON AND MARTIN R. GIBLING

Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4R2, Canada
<sharane.simon@dal.ca>

The Clear Fork Group is a 400 m thick, fluvio-continental unit that was deposited on the Eastern Shelf of the Midland Basin. Colwell Creek Pond is a fossiliferous site within the informal middle unit which provides a rare opportunity to evaluate the environments in which plants grew and the taphonomic conditions responsible for the well-preserved plant leaves.

Two partially preserved channel bodies are present. Storey 1 is a 5 m deep channel cut with a width: thickness ratio of 13:1. A thin basal channel deposit (50 cm) of pebbly conglomerate, ripple cross-laminated and planar-stratified sandstone rests erosionally on red massive siltstones interpreted as paleosols; the sandstone contains diplichnitisid trackways. Above is a 2 m thick laminated claystone with varicoloured laminae, loop bedding and microfaults. Each lamina ranges from 0.3 cm to 2 cm in thickness and is normally graded from coarse silt to clay with non-erosive, parallel-planar bedding surfaces. XRD and TOC analysis indicates the presence of chlorite, illite and other detrital grains but no carbonate or evaporite minerals, with negligible organic carbon. The storey is capped by 2.9 m of massive claystone with root traces and abundant slickensides below the erosive base of Storey 2, a sheet-like channel body with stacked fining-upward cycles.

The Storey 1 channel was abruptly abandoned shortly after incision. Sediments were delivered by slow-moving density underflows that laid down graded laminae. The upward change to rooted claystone indicates shallowing due to sedimentation and, perhaps, declining water levels. Similar well laminated abandonment fills are common in the Clear Fork Group but rare in fluvial units elsewhere, and imply a lack of bioturbating organisms.

Plant fragments are preserved in the laminated claystone, and probably settled from suspension after transport by the density underflows. Well-preserved fronds of the conifer Walchia piniformis, the cycadophyte Taeniopteris spp. and the selaginella Atripityla waggoneri were probably derived from the adjacent riparian zone. They were preserved as 3D goethite petrifactions which suggest that early mineralization, probably promoted by microorganisms, arrested decay and aided preservation.

The abundance of exceptionally preserved plants might suggest a well vegetated landscape and relatively humid setting, as supported also by the detrital nature of the laminae. However, within the Clear Fork Group, the lack of upright trees, the scarcity of logs, and the presence of laminated, non-bioturbated fines suggest a relatively arid setting. Early biomineralization and exceptional preservation of fronds may have imposed a taphonomic bias on the assemblage.

Petrology and age of the “Chéticamp pluton”, western Cape Breton Highlands, Nova Scotia

LISA R. SLAMAN, SANDRA M. BARR*, CHRIS E. WHITE*, and DEANNE VAN ROOYEN*
The Chéticamp pluton is a large mainly granodioritic to granitic pluton defined and mapped in the 1980s in the western Aspy terrane of Cape Breton Island, Nova Scotia. The poorly constrained late Neoproterozoic age previously reported for the pluton, as well as its mainly faulted contacts, have made it difficult to understand its relationship to its host rocks and the significance of its location in the otherwise mainly Ordovician-Silurian Aspy terrane. Mapping during the summer of 2014 and follow-up petrological work have resulted in subdivision of the pluton into seven map units, although relative ages remain uncertain. The Grand Falaise granodiorite is the largest, and occurs in two separate areas in the central and northern parts of the pluton. It is medium- to coarse-grained and locally megacrystic with large crystals of K-feldspar; the main ferromagnesian mineral is biotite. The Grand Falaise granodiorite is in faulted contact with the Pembroke Lake monzogranite, muscovite-bearing, medium- to coarse-grained, and locally megacrystic with K-feldspar megacrysts. The Chéticamp River tonalite forms two separate areas in the northern part of the pluton. It is equigranular and fine- to medium-grained, and contains both biotite and ferroan-pargasitic hornblende. Dioritic rocks occur in two small areas, one in the upper part of Fisset Brook where is appears to have intruded part of the Jumping Brook Metamorphic Suite, and the other in the southern part of the pluton around Lavis Brook south of the Pembroke Lake monzogranite. In both areas the rocks are mainly equigranular to porphyritic quartz diorite, grading locally into granodiorite and quartz monzodiorite. The McLean Brook granodiorite, previously interpreted to be of Devonian age, occurs in the southernmost part of the pluton. It is subporphyritic, and shows a distinctive texture of subhedral plagioclase laths and interstitial potassium feldspar. A small area of fine-grained equigranular syenogranite occurs at French Mountain where it clearly intruded the northern body of the Chéticamp River tonalite. Geochemical data from all units have SiO₂ between about 50% and 76%, with typical fractionations trends well developed in the Grand Falaise and Pembroke Lake granodioritic and monzogranitic units, but less so among the other units. However, all are calc-alkalic and likely formed in a converging plate setting. Preliminary results of U-Pb dating of zircon (still in progress) indicate that the units of the “Chéticamp pluton” have a wide range of age, including ca. 566 Ma (Grand Falaise granodiorite), 500 Ma (Chéticamp River tonalite), and 440 Ma (Lavis Brook quartz diorite).

Tetrapods from the Tournaisian of Nova Scotia and northern Britain: new evidence of tetrapod diversity in the Early Carboniferous

TIMOTHY R. SMITHSON¹, JASON S. ANDERSON², CHRIS F. MANSKY³ AND JENNIFER A. CLACK¹

1. University Museum of Zoology, Downing Street, Cambridge CB2 3EJ, UK <ts556@cam.ac.uk> ¶ 2. Department of Comparative Biology and Medicine, University of Calgary, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada, ¶ 3. Blue Beach Fossil Museum, 127 Blue Beach Road, Hantsport, Nova Scotia B0P 1P0, Canada

Tetrapod trackways have been known from the Tournaisian Horton Bluff Formation at Blue Beach, Nova Scotia, for more than 170 years. An extensive new collection of tracks and trackways from several localities in the Horton is now the oldest known diverse tetrapod ichnofauna, with 5 footprint morphotypes, including a smaller Batrachichnus-type, suggesting a 0.2 m or smaller trackmaker. Tetrapod body fossils were first found there in the 1960s, but only over the past 15 years has the extraordinary richness of the locality been realized. Regular walking of the beach has revealed a wealth of new material in the talus from the eroding cliffs. Many isolated tetrapod limb and girdle bones have been collected, but diagnosable skull and axial elements are rare. At least four taxa have been identified so far, including one with an Acanthostega-like femur and another with a Tulerpeton-like femur. This may be evidence that Devonian-grade tetrapods continued into the Early Carboniferous. All the diagnostic tetrapod remains are from larger animals, in the range 0.5 – 1.5 m long. This contrasts with the tetrapods discovered recently from nearly coeval deposits of the Ballagan Formation in the Tweed Basin of northern Britain where, alongside large individuals, much smaller adult forms c 30 cm long are present. These would match the sizes of some of the small tracks from Blue Beach. The associated vertebrate fauna at Blue Beach includes rhizodonts, elasmobranchs, large and small actinopterygians, and several acanthodian groups (scarce gyracanthids, rare climatiids, and abundant acanthodids). Lungfish are very rare. This differs from that of the Tweed Basin fauna where gyracanthids are common, lungfish are diverse, actinopterygians are small and elasmobranchs are almost entirely absent. These differences probably reflect contrasting geological settings. The Horton Bluff Formation is interpreted as accumulating in marginal marine conditions, and many of the vertebrate bearing horizons appear to be storm deposits. The Ballagan Formation in the Tweed Basin is interpreted as deposition on extensive low-relief vegetated
coastal-alluvial plains. There is evidence that both were in close proximity to upland areas. Vertebrate fossils have occasionally been collected from other localities in the Horton Bluff Formation in the Minas Basin. Experience in the Tweed Basin suggests that this augurs well for the prospect of future Tournaisian discoveries in Nova Scotia and other parts of the world.

The top predator of Joggins and its tracker Donald Reid
*MATT STIMSON*¹, JOHN CALDER² AND BRIAN HEBERT³

The Carboniferous section exposed at the Joggins Fossil Cliffs World Heritage Site is famed for its record of Pennsylvanian tetrapods and their footprints. The tetrapod body fossil record is dominated by small tetrapods due to their taphonomic bias of being entombed within fossil tree hollows. The corresponding record of larger tetrapods at this locality is scarce. A clue to the existence of large tetrapod footprints at Joggins was first recognized by Sir William Dawson, who collected a partial print later assigned by George Frederick Matthews in 1905 to *Baropezia abscissa*. In the late Twentieth Century, a much richer record emerged primarily due to discoveries by Don Reid that included numerous specimens of the largest tetrapod footprints yet discovered at Joggins. The footprints have been documented from within a 1500 m thick interval that spans the upper Boss Point Formation and overlying Little River and Joggins formations, all of the Cumberland Group. The age of this stratral interval falls within the Bashkirian stage of the Lower Pennsylvanian. Ascribing the footprints to existing ichnotaxa has been problematic, in part due to the antiquity of descriptions, synonymy of large tetrapod footprints of this time period, and a restricted number of type specimens. Candidate ichnotaxa from the published literature include the ichnogenera *Baropezia, Pseudobradypus, Schmidtopus, Parabaropus* and *Megapezia*. The newly recognized footprints conform best to the concept of *Baropezia* but not to a known ichnospecies. The footprints average 10 cm in width, with stubby toe prints that invariably show extramorphological variation created by extraction of deeply impressed feet with resulting toe drags. As is usually the case, there is no ‘Cinderella with its foot in the slipper’; an incomplete skeletal record of a crocodile-sized tetrapod comprising a jaw and pelvic girdle, assigned at least in part to the amphibian *Baphetes*, is the leading candidate for trackmaker. It is fitting that footprints of the top predator and largest tetrapod at Joggins eventually be named in honour of Mr. Reid, ‘Keeper of the Cliffs’, who has excelled in his ability to recognize the fossil footprint record of Joggins, and whose collection contributed to the inscription of Joggins on UNESCO’s list of World Heritage.

An evaluation of alteration assemblages and fluid-inclusion chemistry in granitoid samples from the South Mountain Batholith, Nova Scotia: a tool for deciphering barren and mineralized zones
*FERGUS TWEEDALE*¹, JACOB HANLEY¹, DANIEL KONTAK², AND NEIL ROGERS³

1. Department of Geology, Saint Mary’s University, Halifax, Nova Scotia B3H 3C3 <fergus.tweedale@smu.ca> ¶ 2. Department of Earth Sciences, Laurentian University, Sudbury, Ontario P3E 2C6 ¶ 3. Geological Survey of Canada, Ottawa, Ontario K1A 0E8

The Devonian South Mountain Batholith of Nova Scotia is a large (~7300 km²), contiguous granitoid intrusion that consists of 13 coalesced plutons of granodiorite to leucomonzogranite composition which host a variety of mineralized zones (e.g., Sn-Zn-Cu-Ag, Mo, Mn-Fe-P, U, Cu-Ag). Given the hydrothermal nature of this mineralization, it is expected that the mineralizing fluids might manifest itself both petrographically, as alteration assemblages, and by the chemistry of secondary fluid inclusions in the granites on a scale equal to or larger than the mineralized centres. This study assesses the potential of using such information to decipher barren and mineralized areas. The novel research protocol includes: (1) detailed petrography of hundreds of archived samples that focuses on: (i) abundance and type of perthite, (ii) degree of chloritization of biotite, (iii) abundance of sericite, (iv) degree of saussuritization of plagioclase, (v) abundance of white mica, and (vi) abundance of secondary fluid inclusions in quartz; and (2) the chemistry of quartz-hosted fluid inclusions, based on SEM/EDS mound analysis from a sample suite representative of the entire batholith. The petrographic data and fluid chemistry was used to map the extent of alteration across the batholith, which indicates that fluid:rock interaction was batholith-wide and that its interaction generated Na-K-Ca-Cl-F rich fluids in addition to primary enrichment of Fe, Zn and Cu. Specifically, two distinct fluid types are present, one Na-K-Cl and the other Na-Ca-Cl-F; this enrichment of F in one of the fluid populations is the first recognition of this phenomenon in granitic bodies on such a large scale. The occurrence of this F-rich fluid across the SMB, including its most primitive rocks (i.e., granodiorites), suggests its generation is part of the
natural evolution of the system and consistent with the presence of topaz in both the most evolved phases and as an integral part mineralized greisens.

Cross-hole electrical resistivity imaging to study water and nitrate infiltration processes at Harrington Research Farm, PEI, Canada

SHUANG WANG\(^1,2\), KARL E. BUTLER\(^1\), S. DANIELESCU\(^3\), B. PETERSEN\(^2\), E. MOTT\(^1\), AND M. GRIMMETT\(^4\)

1. Department of Earth Sciences, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
2. Department of Electrical and Computer Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
3. Potato Research Centre, Agriculture and Agri-Food Canada, Fredericton, New Brunswick E3B 4Z7, Canada
4. Crops and Livestock Research Centre, Agriculture and Agri-Food Canada, Charlottetown, Prince Edward Island C1A 4N6, Canada

Nitrate is a necessary nutrient for plants, originating from both natural and anthropogenic sources, such as mineralization of organic matter and agricultural fertilizers. However, high concentrations of nitrate in water can negatively affect aquatic ecosystems and human health. 3D Electrical Resistivity Imaging (ERI) is one of the techniques being used at AAFC’s Harrington Research Farm near Charlottetown, PEI, to investigate the subsurface transport of nitrate including (i) the time taken to percolate to the water table, (ii) the partitioning between (slow) matrix and (fast) fracture flow, and (iii) the generation of perched water table overlying low permeability layers that may give rise to lateral flow and discharge to surface water at certain times of year. The infiltration of water and electrical conductive tracer can cause changes in subsurface resistivity distribution. Thus, 3D imaging and monitoring of resistivity may be used to infer water/tracer pathways and the downward velocity of water. Since nitrate is highly soluble, its movement may be similarly monitored, although its progress may be delayed by chemical reactions along the way.

To monitor groundwater movement with 3D ERI through the ~17 m thick vadose zone, without sacrificing resolution at depth, a cross-hole measurement geometry is used. There are 24 electrodes, spaced 0.68 m apart in each of three boreholes located at the vertices of an equilateral triangle with 9 m sides. An additional 8 “trench electrodes” are buried at 0.5 m depth along each side of the triangle. Soil moisture, temperature and electrical conductivity are being monitored using 11 Decagon 5TE sensors in each borehole. Borehole casings have been removed and all electrodes and sensors buried below surface so they can remain in place during farming operations. Each ERI survey involves the acquisition of a sequence of apparent resistivity measurements with different kinds of dipole-dipole configurations. Initial surveys, acquired between early September and late December, 2014 reveal a model consisting of five sub-horizontal layers, in general agreement with the expected geology of overburden overlying interbedded fluvial sandstone and shale layers. Two of these layers are more electrically conductive and are thought to represent shale-rich units which are expected to impede water infiltration and could give rise to perched water table conditions. Future work will involve the production of time-lapse images to monitor natural water infiltration and the application of a conductive tracer to enhance our ability to image ground water pathways and variations in the speed of infiltration.

Results from the first topo-bathymetric lidar surveys of the Chiroptera II sensor reveals near-shore structures to improve geological mapping

TIM L. WEBSTER, KEVIN MCGUIGAN AND NATHAN CROWELL

Applied Geomatics Research Group, Nova Scotia Community College, Middleton, Nova Scotia B0S 1P0, Canada
<tim.webster@nscc.ca>

The Applied Geomatics Research Group (AGRG) within the Nova Scotia Community College (NSCC) acquired a new shallow water airborne topo-bathymetric lidar sensor and flew the first missions in September 2014. The survey areas consisted of several embayments along the Northumberland Strait. Many of the areas sheltered bays that host or offer the potential to host shellfish aquaculture farms. The low flow rates associated with the inner bays promote high volumes of sediment cover and bedrock features are rarely exposed. However, the area near Cape John, Nova Scotia, where Carboniferous age sandstone rocks of the Cumberland Basin are exposed provides insights into the potential of this sensor to be used to enhance and extend structural information on geological maps. Traditional topographic lidar reveals a smooth terrestrial landscape with limited outcrop as a result of the deposition of glacial till. The bedrock is exposed along cliffs at the coast where limited bedding and structural measurements can be taken. The penetration of the green laser is limited by water clarity, which in this region is influenced by wind-induced waves which can re-suspend fine-grained sediment derived from the glacial till and increase the turbidity of the water. The first attempt to survey Cape John was aborted on Sept. 25 because of high water turbidity levels and
Continental rifts: lithospheric weakness and strength contrasts as triggers for necking instabilities
*STEFANIE WENKER 1 AND CHRISTOPHER BEAUMONT 2

1. Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada;
<stefanie.w@dal.ca> ¶ 2. Department of Oceanography, Dalhousie University, Halifax, Nova Scotia B3H 4J1, Canada

Continental rifts are the first stage in the formation of rifted margins. Since continents are far from homogeneous after multiple cycles of collision, strike-slip motion and rifting, heterogeneities can influence the location and geometry of rifting. We use 2D finite element models containing embedded finite weak zones in the crust and/or mantle as well as a vertical lithospheric boundary across which the rheology changes to represent these heterogeneities. The resulting strength contrast at the lithospheric boundary changes the growth rate of necking instabilities on either side of it.

Necking is a mechanism that depends on the distribution of viscous and plastic layers in the lithosphere; stiff layers deform plastically and rapidly grow necking instabilities, whereas pliable, viscous, layers slowly grow necking instabilities. Additionally, the growth rate of necking instabilities is amplified by the background strain rate (the strain rate in the absence of any weak zones), which implies faster necking in parts of the lithosphere where background strain rates are highest. Considering these competing mechanisms, we recognize two controls on the location of rifting: Control 1, the stiff/pliable nature of the lithospheric layers, and; Control 2, the distribution of the background strain rate in the lithosphere.

In a laterally homogeneous lithosphere, the background strain rate is uniform along each layer and Control 1 will dominate, preferentially initializing necking in stiff layers. However, juxtaposed lithospheres with different strengths will lead to an asymmetrical strain with a higher background strain rate in the weaker lithosphere. In this case, faster necking can occur in pliable layers under a higher strain rate, even if inherited weak zones are present in stiff layers that are under a lower strain rate; Control 2 wins. Our results show that deformation localizes away from the lithospheric boundary in the lithosphere under the higher strain rate. Our model results imply Control 2 wins whenever the background strain rate contrast is larger than $1.0 \times 10^{-16} \text{s}^{-1}$. That Control 2 wins has implications for the preservation of cratons, which are cold and strong, and probably stiff. Even though they contain inherited weak heterogeneities, they are protected by Control 2, provided they are surrounded by weakling lithospheres such as younger orogens. We will also present a case where a combination of Control 1 and 2 produces a highly asymmetric margin, which we compare with the Gabon-Camamu conjugate margins in the South Atlantic.
production of the Atlantic Geoscience Society’s *Geological Highway Map of New Brunswick and Prince Edward Island*, published in 1985. Laing served on AGS Council for many years, being President in 1982. He was the first recipient of its Distinguished Service Award in 1989, given in recognition of his outstanding contributions to the Society. This award was subsequently renamed the Laing Ferguson Distinguished Service Award given in recognition of his outstanding contributions to the Society. The Lifetime Membership Award was inaugurated in 1999 by AGS, especially to honour Laing. To date, there are only two other recipients. Outside geology, Laing has led an exemplary life, being President of Amnesty International Canada from 1976 to 1978. For many years he was at the forefront of efforts to free political prisoners and in the fight against repressive regimes. Laing was a great geological teacher and researcher, who was also a gifted humanitarian. The world needs more people of his ilk.

Wetzeliella and its allies — the “hole” story: a new look at the Paleogene dinoflagellate subfamily *Wetzelielloideae*

GRAHAM L. WILLIAMS¹, SARAH P. DAMASSA², ROBERT A. FENSOME¹ AND G. RAQUEL GUERSTEIN³

¹. Geological Survey of Canada (Atlantic), Natural Resources Canada, P.O. Box 1006, Dartmouth Nova Scotia B2Y 4A2, Canada <graham.williams@nrcan.gc.ca> ¶ ². Ridge St., Winchester, Massachusetts 01890, USA ¶ ³. Laboratorio de Palinología INGEOSUR, Departamento de Geología, Universidad Nacional del Sur, San Juan 670, 8000 Bahía Blanca, República Argentina

Dinoflagellate cysts are found as organic-walled microfossils in Mesozoic–Cenozoic strata. They have distinctive and variable morphology and evolved rapidly; hence they have become invaluable for providing biostratigraphic control in shelfal marine sediments. Many living dinoflagellates have a distinctive cellulose “armour” of plates, the pattern of which tends to be reflected in various ways on the resistant organic walls of fossilizable cysts. For example, the excystment aperture (archeopyle) of cysts tends to consistently occur within a genus or species at the site of one or more specific reflected plates. The Paleogene (now extinct) subfamily *Wetzelielloideae* have a stable reflected tabulation pattern distinguished by a four-sided (quadra) rather than a six-sided (hexa) mid-dorsal 2a plate. Aside from tabulation, wetzelielloideans show great morphological variability, especially in ornamentation and horn development, but also in wall structure. This variation shows no clear trends through time, but has dominated criteria for the definitions of genera and species, leading to frustrations in attempts to use wetzelielloideans as stratigraphic index fossils. Diversity in shape, wall structure and ornamentation has also distracted attention from the morphological variation of the archeopyle, which, although always formed through loss of the 2a plate only, shows variations that we consider critical in unravelling the group’s phylogeny, and hence stratigraphic utility. Important factors are the shape and relative dimensions of the archeopyle and whether the operculum is attached or detached. These parameters allow us to define five archeopyle types: equiepeliform, hyperepeliform, hypersoleiform, latiepeliform and soleiform. Based primarily on archeopyle type and secondarily on wall morphology and ornamentation, we recognise six genera with an equiepeliform archeopyle, four with a hyperepeliform archeopyle, five with a latiepeliform archeopyle, five with a soleiform archeopyle, and one with a hypersoleiform archeopyle. The earliest-known wetzelielloideans, which occur around the Paleocene–Eocene boundary, have an equiepeliform archeopyle. Other archeopyle types evolved rapidly: taxa with hyperepeliform, latiepeliform and hypersoleiform types are known from the Ypresian. Latiepeliform and hyperepeliform types are restricted to the Ypresian and Lutetian. Forms with the soleiform archeopyle appeared in the late Lutetian, but were rare until the Bartonian, when they became the dominant type, and they were the only type in Priabonian and younger strata. Wetzelielloideans became extinct in the middle Oligocene. Applying our criteria increases the usefulness of wetzelielloideans in determining the ages of Paleogene strata, as well as providing a better understanding of evolutionary trends within the group.

Superimposed mineralizing events involved in making giant ore deposits:

Evolution of the telescoped Chuquicamata porphyry Cu-Mo deposit in Chile

MARCOS ZENTILLI AND MILTON C. GRAVES

Department of Earth Sciences, Dalhousie University, Halifax, Nova Scotia B3H-4R2, Canada; <marcos.zentilli@dal.ca; milton.graves@dal.ca>

Emphasis on generalized ore deposit models may result in misleading expectations in the exploration for hidden new deposits. Metal or alteration zoning may not reflect a single event in time and P-T space. Many giant metal deposits are telescoped, meaning early, deep, hot mineralization was overprinted by late, shallower, cooler pulses of notably different chemistry. Furthermore post-ore processes may have modified the original geometry and mineralogy. The
giant Chuquicamata porphyry Cu-Mo deposit (Chuqui) in the northern Chilean Andes is a good example of this complexity:
1. Chuqui developed within an active volcanic arc since the late Eocene (40 Ma), within the roots of a stratovolcano undergoing uplift and erosion. The first mineralizing intrusions were emplaced at 36 to 35 Ma and are associated with Cu and potassic alteration. Thermochronology and mineralogical data suggest that the mineralized rock was more than 6 km deep and at ca. 535°C. Ductile and brittle structures indicate an orogen-parallel dextral shear regime.
2. Unmineralized porphyries of similar geochemistry were intruded at ca. 33 Ma (Oligocene).
3. Large Mo-rich quartz (“blue”) veins followed at ca.32 Ma, still under a dextral regime and rapid exhumation.
4. At ca. 31 Ma, a new hydrothermal influx invaded the previously mineralized rock, now located at a depth of ca. 2-3 km. This pulse was highly acidic, at a temperature of 335-400°C, and produced sericite and argillic alteration. It was rich in Cu, Au, Ag, but also in (metallurgically) detrimental As, Sb, Zn and Bi, and anhydrite. The anisotropy of distribution of useful and deleterious elements reflects the evolving permeability in response to changing structural regime.
5. The tectonic system reversed drastically to sinistral brittle shear, now localized along a regional NS fault. This fault truncated one third of the Chuqui orebody and displaced it several km to the south.
6. Exhumation and erosion slowed down and exposed the mineralization to surface weathering and supergene enrichment, during a time of climate desertification. Oxidation of pyrite produced great amounts of sulfuric acid that leached the Cu in the upper portions of the orebody, and deposited it at the level of the paleo groundwater surface. Some of this Cu was carried by groundwater and deposited as “exotic” oxides as far as 10 km downstream within thick Cenozoic gravels that covered the displaced portion of Chuqui (ca. 22 Ma; Miocene).
All of these superimposed processes together determined the mining and metallurgical history of the deposit.
AGENDA

1) Approval of Agenda
2) Approval of minutes of 8 February, 2014, Wolfville, NS
3) Matters Arising from the Minutes
4) Presentation of the Financial Report (C Campbell, N Koziel)
5) Appointment of Financial Reviewers for 2015
6) Annual Reports of the 2014-15 Executive and Committees
 - Report from the President (C Stanley)
 - Report from the Education Committee (J Bates)
 - Report from the EdGeo Workshop Committee (J Bates)
 - Report from the Video Committee (G Williams)
 - Report from the Products Committee (D Keighley)
 - Report from the Awards Committee (J Calder)
 - Report from the Publications Committee (S Barr)
 - Report from the Atlantic Geology editors (S Barr)
 - Report from the Publicity Coordinator (E Kosters)
 - Report from the Webmaster (J MacIntosh)
 - Report from the Travelling Road Show committee (M Grey)
 - Report from the Science Atlantic Earth Science Committee (M Graves)
7) GAC-MAC conference, co-hosted by AGS in Fredericton, 2014 (D Lentz / C McFarlane)
8) Election of Incoming Executive & Councillors (G Wach) (see slate appended below)
9) Other Business Arising from Meeting
10) Adjournment
Minutes of Meeting

1) Approval of Agenda – G Wach called the meeting to order at 12.25 p.m. E Kosters moved, J Payne seconded, that the agenda be approved. No objections.

2) Approval of minutes of 2 February, 2013, Annual General Meeting, Dartmouth, NS – C Stanley moved, P Ryall seconded, that the minutes of the 2013 Annual General Meeting be approved as circulated. No objections.

3) Matters Arising from the Minutes – None

4) Presentation of the Financial Report – C Campbell and N Koziel provided financial statements (appended) and noted that GICs are being rolled over as required, with some funds being extracted for the purchase of a batch of Gesner Medals. C Campbell noted that the Society is retaining funds in excess of that recommended by Revenue Canada. G Williams moved, C Stanley seconded, that the report be accepted. No objections.

5) Appointment of Financial Reviewers for 2014 – M Lewis and I Spooner were nominated to review the books for 2014-15.

6) Annual Reports of the 2013-14 Executive and Committees – written copies of these reports were provided in the program; additional items are noted below.
 Report from the President (G Wach)
 Report from the Education Committee (J Bates)
 Report from the EdGeo Workshop Committee (J Bates)
 Report from the Video Committee (G Williams)
 Report from the Products Committee (D Keighley – noted that two submissions were considered by the Council at the 7 February meeting of Council, with approval of $1000 toward the Geology of Nova Scotia guidebook, and $3000 toward the UNESCO Conference on Global Geoparks. Furthermore, Council received and approved a request from the GAC-MAC 2015 LOC to support the cost of poster boards to the value of $4500.
 Report from Publications Committee – S Barr reported that the committee has been initiated. At its inaugural meeting on 7 February S Barr was appointed as chair, and members recognised an overlap between the responsibilities of the Publications Committee and Products Committee that needs to be resolved.
 Report from Atlantic Geology editors (S Barr)
 Report from Awards Committee (C Stanley)
 Report from Membership Committee (R Raeside for A Miller)
 Report from Science Atlantic (Earth Science) Committee (M Graves)
 Report from Publicity Coordinator (E Kosters) – M Parsons suggested that AGS be active on Facebook and volunteered to contact Grant Ferguson to re-initiate the Facebook account.
 Report on conference registration – the Society moved to online registration with EventRebels last year, and added online payment through PayPal this year. PayPal will be used now for subscriptions, purchases, and *Atlantic Geology* renewals.
Report from Webmaster (J MacIntosh)
Report from Public Talks committee (Travelling Road Show: M Grey)
Report on Colloquium registration (E Kosters) – report attached.

D Piper moved, A Ruffman seconded, that all the reports be accepted as provided. No objections.

7) GAC-MAC conference, co-hosted by AGS in Fredericton, 2014 – J Walker reported on the finalization of the program, that abstract submission deadline is 10 February, although that date will be extended, and encouraged AGS members to attend the conference in May.

8) Motion: That two prizes be awarded for best posters at the AGS Colloquium: the Graham Williams Award for the best poster by a graduate student and a new “Rob Raeside Award” for the best poster by an undergraduate student. Moved by C Stanley, seconded by E Kosters. Carried.

9) Election of Incoming Executive & Councillors: Past President E Kosters presented a slate of candidates for office:
 President Clive Johnson, Acadia
 Past President Grant Wach, Dalhousie
 Vice-President
 Treasurer Calvin Campbell, Nelly Koziel, GSC (Atlantic)
 Secretary Rob Raeside, Acadia
 Councillor John Calder, NS DNR (new member, Gesner Inst. Soc. rep)
 Councillor Mark Deptuck, Canada-Nova Scotia Offshore Petroleum Board
 Councillor Melissa Grey, Joggins Fossil Centre
 Councillor Jacob Hanley, St. Mary’s (Speaker Tour coordinator)
 Councillor Chris McFarlane, UNB-F
 Councillor Andrew McRae, St. Mary’s
 Councillor Ann Miller, Wolfville
 Councillor Randy Miller, NB Museum
 Councillor Hamish Sandeman, NL DNR
 Councillor Kay Thorne, NB DEM, Fredericton
 Councillor Deanne van Rooyen, CBU (new member)
 Councillor Jim Walker, NB DEM
 Councillor Sheila Watters, Apoanaki, NB (new member)
 Councillor Chris White, NS DNR
 Councillor Mike Young, Dalhousie
 Councillor Renee Delisle, Acadia – graduate student
 Councillor _____________, UNB – undergraduate student (to be determined by UNB)

 C Stanley moved, P Ryall seconded, that the slate be approved. Carried. A Ruffman moved a motion of thanks to those councillors who are stepping down, seconded by D Piper. Carried.

10) Other Business Arising from Meeting

 J Calder reminded members of the Geoheritage Sites process, with a vetting session to be held later in the meeting.

11) Adjournment at 1.30 p.m. on a motion from C. Stanley.
The AGS year traditionally begins with our annual colloquium, and 2014 began with our 40th general assembly, this time at the Old Orchard Inn in Wolfville, Nova Scotia. There, we were ably hosted by colloquium chairs Ian Spooner, Rob Raeside, and Elisabeth Kosters, and enjoyed and learned from the superior technical program they put together.

Of particular interest at our 2014 meeting was the awarding of the Gesner (Distinguished Scientist) Medal to Dr. Cees Van Staal of the Geological Survey of Canada, and the Laing Ferguson (Distinguished Service) Award to Dr. Ian Spooner of Acadia University. Four additional presentation awards to students were also made:

(i) the Graham Williams Award for best graduate student poster presentation went to Lea Braschi,
(ii) the Rob Raeside Award for best undergraduate student poster presentation went to Jennifer Archibald, Victoria DesJardins, Laura-Ann Broom, Jeff Minichiello and Anne-Marie Ryan of Dalhousie University of Dalhousie University,
(iii) the Sandra Barr Award for best graduate student oral presentation went to Justin Drummond of Acadia University, and
(iv) the Rupert McNeill Award for best undergraduate student poster presentation went to Ben Misiuk of Acadia University.

Finally, our annual sojourn was topped off by Dr. Sandra Barr, the longstanding editor of our Atlantic Geology journal, with her Banquet Presentation: “50 Years of Atlantic Geology”.

With our annual general meeting over, the association got about its business, continuing their sponsorship of the AGS-Science Atlantic Speaker Tour, which featured Drs. Hugo Beltrami of St. Francis Xavier University and Danika von Proosdij of St. Mary’s University, who gave talks on Continental Heat Budgets and Intertidal Dynamics, respectively, at several universities last winter. Drs. Chris McFarlane of the University of New Brunswick, and Dr. Deanne van Rooyen of Cape Breton University have been chosen in the same capacity for the upcoming year, and will be giving talks on Hydrothermal Alteration and the Laurentian Basement, respectively, this winter.

A number of other significant achievements were made by the AGS during the year that deserve special mention. Specifically, of substantial importance was the inauguration and activities of the Publications Committee, headed by Sandra Barr. This group was able to arrange to have the entire portfolio of AGS Publications archived in the Dalhousie Library, and be made available on-line via the provincial NovaNet website. This will ensure the retention and easy access of all AGS geological contributions well into the future, and so represents an important geoscience legacy.

Another important contribution was the assembly of all Gesner Medal citations for the various winners from 1993 through to the present by Elisabeth Kosters. These have been placed on the association website, and describe the important achievements of these leading contributors to geoscience knowledge in the Atlantic region.

In the spring, the AGS, and many of its members, made important contributions to the running of the GAC-MAC conference in Fredericton in May. Officially, the AGS contributed funds used to enable poster presentations at the conference, but a large number of AGS members also contributed to the management and presentation of this national conference as members of the organizing committee and presenters of technical material in talks, posters, field trips and workshops/short courses. The contributions of all of these AGS members served to ensure a well-run colloquium and successful meeting, and I am sure that attendees from the other parts of Canada and overseas were impressed with the event.

On a related subject, the GAC-MAC conference organizers have enquired about future interest within the AGS in hosting another GAC-MAC conference in Atlantic Canada. After some thought, your council has suggested that we defer hosting this conference again in 2019, in favor of hosting it in 2022, which represents our 50th anniversary as a society, and would allow us to use that event as a true milestone celebration.
Speaking of anniversaries, this past fall, the AGS teamed with Science Atlantic to help sponsor the 65th annual Atlantic Universities Geoscience Conference, this year held at the University of New Brunswick in October. At the conference, a number of excellent presentations were made by students from throughout Atlantic Canada, and a number of awards were given out:

(i) the Science Atlantic Award, for best overall oral presentation went to Jillian Leigh Kendrick of Dalhousie University;
(ii) the Frank S. Shea Memorial Award, for best oral presentation in the field of economic geology went to Nikolett Kovacs of the Memorial University of Newfoundland;
(iii) the Canadian Society of Petroleum Geologists Award, for best oral presentation in the field of petroleum geology went to Dillon White of St. Mary's University;
(iv) the Canadian Society of Exploration Geophysicists Foundation Award for best oral presentation in the field of geophysics went to Andrew Blagdon of Memorial University; and
(v) the Imperial Oil Poster Award, for best poster presentation went to Haley LeBlanc of St. Mary's University.

Largely on the initiative of Melissa Grey, the AGS has implemented a new Geoscience Speakers Tour to present to the public at an accessible level geoscience topics of interest. I have been selected as the inaugural speaker, and will be giving a set of lectures through rural Nova Scotia this year on the subject of ‘Arsenic in Nova Scotia Groundwater’. The series will commence with a talk on January 29th (the day before our annual meeting) at Mt. Allison University, and a number of other venues are under consideration, including Greenwood, Nova Scotia, where elevated arsenic concentrations have recently been reported in well water.

Over the year, a number of public policy issues came forward that were informed by geoscience knowledge. As a society with the purpose of ensuring the proper and accurate dissemination geoscience knowledge, we took note! The provincial review on Hydraulic Fracturing (fracking) involved an in-depth study of this technology’s potential benefits and risk in Nova Scotia. Although not associated with that review in any way, our society, largely through the efforts of Past President Grant Wach, kept a keen eye on the process and results of this review, with much discussion in council meetings.

In addition, when it was learned that a proposed Veteran’s Memorial was to be placed at the Green Cove headland in Cape Breton Highlands National Park, we also took note! Because the rocks exposed at this location have been under consideration as a Geoheritage Site since 2012, council has drafted a letter to the government and public encouraging its relocation won’t destroy part of Nova Scotia’s geoheritage.

Speaking of Nova Scotia’s Geoheritage List, John Calder has organized a workshop at our upcoming colloquium to discuss the merits of the various proposed geoheritage sites allowing members to share their opinions about this important outreach vehicle.

And lastly, to make sure we are all on the same page, the 2015 AGS Annual Meeting will be held next week at Mt. Allison University in Sackville, New Brunswick. I look forward to this event, organized by Melissa Grey, Tim Fedak, Elisabeth Kosters, and Rob Raeside.

In closing, I would like to thank all of the councilors and committee members who very ably served the association over the past year. Under the able management of editors Sandra Barr, Rob Fensome, Simon Haslett, and David West, our on-line journal, Atlantic Geology, is thriving, and I would like to commend this team for their hard work and dedication. I would also specifically like to recognize the AGS executive: past-president Grant Wach, vice-president John Calder, the ‘Treasury Team’ of Nelly Koziel and Calvin Campbell, and AGS Secretary Rob Raeside, for their guidance and support throughout my 2014-2015 term. They are the group that actually runs this society, and as many before me can attest, the president’s job involves mostly staying in one’s seat, trying to hold the reins, and firmly hanging on!

Lastly, I would like to welcome John Calder as incoming president to a strong and vibrant society.

Respectfully submitted by
Cliff Stanley, President, January 23rd, 2015.
Atlantic Geoscience Society Education Committee
2014 Annual Report

Nova Scotia Branch

Nova Scotia Pebble Guide: The guide will be useful for introducing students or the public to the subject of geology. Constructive feedback and recommendations from committee members and others including the Eastern Shore Education Resource Centre (NS Department of Natural Resources) will be used to improve manuscript. Both printed and virtual versions are being considered. Sub-committee members: Lynn Dafoe (Chair), Jennifer Bates, Martha Grantham, Patrick Potter.

Photographic Guild of NS: The collaboration between AGS and PGNS continues to thrive since its beginning 12 years ago. Annual competitions for the Atlantic Geoscience Society and Last Billion Years awards take place at the Guild’s public Spring Show. Every year, a field trip to a Nova Scotia site of geological note is held. Rob Fensome is the committee member who initiated this effort and he continues to be the connecting thread. Rob's talk at the 2015 Colloquium will highlight the benefits for both groups. For AGS, all entry photographs can be used for educational purposes. Rob (fensome@nrcan.gc.ca) welcomes help from AGS members, whether it be as judge or as geological expert/leader for the annual field trips.

Halifax Young Naturalists Club: Anne-Marie Ryan is the AGS representative. The club runs one meeting a month with in-house and field activities to young people aged 6 to 12. Anyone wishing to participate in YNC should contact Anne-Marie.

Nova Scotia Rocks: This publication is a good candidate for the video clip project led by AGS Video Committee. The 2nd edition of this popular educational brochure was printed in 2013 and is distributed to many tourist centres across the province. As supporters of the product, NS centres and museums highlighting geology receive copies. Schools, universities and groups running educational events have used the brochure in their various activities. There is no fee for the brochure. Copies can be obtained from Nelly Koziel (AGS Publications Office) or at the AGS booth at the Colloquium. The brochure can be viewed on the AGS website. Sub-committee members: Andy Henry (Chair), Jennifer Bates, Rob Fensome, Patrick Potter, Graham Williams

Fundy Basin art work and postcards: A number of years ago, the AGS commissioned artist Judi Pennanen to develop five original paintings to depict the geological history of the Fundy Basin. These paintings are on long-term loan to the Fundy Geological Museum where they are on public display. The cards can be viewed on the AGS website. Each set is $3.00 or two sets for $5.00. To purchase, please contact Nelly Koziel or visit the AGS Booth at the Colloquium. Please contact Nelly to obtain prices for bulk orders for educational purposes.

Four Billion Years and Counting: Canada’s Geological Heritage: While this was not an AGS project, a number of AGS members ensured the publication of both the English and French volumes in 2014. The English volume, a co-publish between Nimbus Publishing and the Canadian Federation of Earth Sciences (CFES), can be purchased by AGS members for $35. The French volume, a co-publish of CFES and Quebec publisher Editions Multimondes, is also available from AGS Publications. An accompanying website (in both languages) will provide the book's graphics for teaching purposes and is expected to be available early 2015.

Nova Scotia Branch members: Ken Adams, Dottie Alt, Sandra Barr, Jennifer Bates (outgoing chair), Paul Batson, Lori Campbell (new member), Jennifer Carroll, Laurel Christie, Amy Coleman, Lynn Dafoe, Garth Demont, Howard Donohoe, Warren Ervine, Gordon Fader, Rob Fensome, David Frobel, Martha Grantham, Bob Grantham, Melissa Grey, Andrew Henry, Chris Jauer, Heather Johnson, Nelly Koziel, Andrew MacRae, Henrietta Mann, Brian Matthews, Ann Miller, Murray Metherall, Brendan Murphy, Mike Parsons, Patrick Potter, Pat Ryall, Anne Marie Ryan, John Shimeld, Matt Stimson, Cliff Stanley (ex officio), Tracy Webb (incoming chair), Pat Welton, Davilyn Williams, Graham Williams, Mike Young, and Marcos Zentilli.
New Brunswick Branch

NB branch members continue to be active in local education events in their province whether it be class presentations, science fairs, public events, or curriculum development.

Members of the NB branches hosted the education program of the 2014 GAC-MAC Annual Meeting in Fredericton, NS. The program included a session on geoheritage, an EdGEO workshop, and a field trip to Stonehammer Park, the first UNESCO Geopark in North America.

Promotion, External Collaboration, and Internal Communication

Promotion is the responsibility of each sub-committee. The Chair of the Nova Scotia Branch of the Education Committee (or designate) is an ex officio member of AGS Council. The AGS President is an ex officio of the Education Committee, and receives copies of meeting minutes and invitations to meetings. Several committee members sit on the current AGS Council.

Teacher members provide a vital link to various grade levels and disciplines of the education sector and to the university environment. Their contribution to committee work ensures useful activities and products.

Several AGS members bridge the Education Committee to other like-minded groups: Photo Guild of Nova Scotia (Rob Fensome); Eastern Shore Education Resource Centre (Martha Grantham); Joggins Fossil Centre (Melissa Grey); GSC Atlantic Communication Committee (Patrick Potter); Halifax Young Naturalists Club (Anne-Marie Ryan); Cumberland Geological Society (Bob Grantham); Fundy Geological Museum (Tim Fedak), Atlantic Science Links Association (Pat Ryall and Jennifer Bates); AGS Video Committee (Nancy Muzzatti, Nelly Koziel, Dave Frobel, and Graham Williams), and NS EdGEO Committee (Lynn Dafoe, Nelly Koziel, Patrick Potter, and Jennifer Bates). Education activities in Newfoundland and Labrador are organized by the Newfoundland and Labrador Section of the Geological Association of Canada.

Treasurer’s Report - A financial report was submitted to AGS Treasurer.

Future of AGS Education Committee

I believe the committee needs to focus its attention on two tasks and both involve the digital online world. First, an update of the committee's presence on the AGS website is well overdue. People are well-entrenched in online information these days and we need to be well represented. Second, digital education products in the way of e-publications, podcasts and video clips need to be a part of AGS's cadre. Development of video clips is under the purview of the AGS Video Committee.

In 2015, committee member Tracy Webb will be chairperson of the AGS Education Committee. Tracy has a background in geology and brings many years of education experience to the committee as well as fresh ideas and new energy. Thank you, Tracy, for accepting the position of chairperson. I also want to thank the committee members for the many years of their support and participation.

Jennifer Bates
Outgoing Chair, AGS Education Committee
The Nova Scotia EdGEO Workshop Committee has offered annual workshops for teachers since 1994. More than 350 educators have participated in the 20 years of the program. The workshops are endorsed by the Nova Scotia Association of Science Teachers and the Nova Scotia Social Studies Teachers Association, and they are evaluated as a valid Professional Development opportunity by the Nova Scotia Department of Education.

The 2014 Nova Scotia EdGEO Workshop was held in conjunction with the Nova Scotia Association of Science Teachers Conference held in Halifax on October 24th. Workshop attendees were senior elementary and junior and senior high school teachers, representing schools from one end of the province to the other. The workshop, entitled “Interpreting Nova Scotia Beaches”, was designed to introduce the geological principles that govern beach composition and morphology.

A brief hands-on session led by Lynn Dafoe and Patrick Potter (Geological Survey of Canada - Atlantic) allowed participants to become familiar with the sedimentary products of the rock cycle; to classify pebbles found in the local area; and, to distinguish the depositional environment of a variety of sediments. The field trip “The Sedimentary Part of the Rock Cycle Shown by Local Beaches”, led by Gavin Manson of GSC Atlantic, included several stops along the coast from Flag Pond to Eastern Passage to observe natural processes and the results of anthropogenic ones. Teachers Paul Batson and Davilyn Williams assisted with the preparation and hosting of the workshop.

Some of the attendees’ comments on the written evaluation include: “Great facilitators! Very knowledgeable in their fields”, “Resources are great and make it easy to teach and share what was learned”, “Best PD I’ve had in years – completely appropriate for use in a classroom at many grade levels”, “Great choice of locations to visit” and “- Very well organized - Thoughtfully planned - Great presenters.”

The workshops succeed because of the support, participation, knowledge, experience, enthusiasm and dedication of the Committee members representing the geoscience and education communities. The following have ensured the long life of the Nova Scotia EdGEO Workshop Program: Dottie Alt, Paul Batson, Lynn Dafoe, Sonya Dehler, Howard Donohoe, Rob Fensome, Cindy Hiseler, Heather Johnson, Nelly Koziel, Bill MacMillan, Henrietta Mann, Murray Metherall, Nancy Muzzatti, Patrick Potter, Anne Marie Ryan, John Shimeld, Deborah Skilliter, Wendy Spicer, Bev Williams, Davilyn Williams, and Graham Williams. These adjunct members have run sessions and/or led field trips: Sandra Barr, John Calder, Terry Goodwin, Bob Grantham, Martha Grantham, Milton Graves, Jennifer Hackett, Fenton Isenor, Becky Jamieson, Stephanie Kienast, Andrew MacRae, Mike Melchin, Brendan Murphy, Mike Parsons, Tetjana Ross, lan Spooner, Matt Stimson, and Tim Webster.

The committee received a grant from National EdGEO to cover the costs of transportation and education resources. Funds provided by AST were applied to the cost of food. A financial report for 2014 has been submitted to the AGS Treasurer.

The 22nd EdGEO workshop will most likely be at the 2015 AST conference.

Jennifer Bates
Chair, Nova Scotia EdGEO Workshop Committee
In 2014, a revitalized AGS Video Committee changed its objectives after the disappointment of the failed attempt to produce a Bay of Fundy video, which was due to a lack of success in obtaining funding. With a limited budget, it was decided to focus on the production of vignettes of three to five minutes in length. There are several advantages to going this route. Costs of production are considerably less than for a full-length video. Members of the Committee can produce them, rather than having to use professional producers. The number of potential topics is increased exponentially. And the final products will be available as downloadable video clips from the internet.

That bigger is not always better has been proven by the enthusiasm of the committee, which now includes several new members that are listed below. One vignette, outlining the geology and history of York Redoubt National Historic Site, is now in the development phase. Members of the sub-committee developing this exciting product are Patrick Potter, Jennifer Bates, Dave Frobel and Nancy Muzzatti. The stars of the show will be Patrick and his dog, Dusty. The two will conduct a tour of the York Redoubt area, with Dusty leading the way and Patrick explaining the geological and historical features.

Suggestions for other vignettes are coming in fast and furious. One really promising idea, proposed by Tim Fedak, is to have a competition for the best student production, both at the high-school and university level. The winners will be offered an award and the Video Committee will include the vignette in its series. That makes everyone a winner.

In late 2014, Dave Frobel stepped down as Secretary of the Video Committee. But fortunately he remains an active member. I would like to thank Dave for his many years of service to the Committee, of which he has been a member for 30 years. And for about 15 of those he served as Secretary.

Marketing of the two videos “Halifax Harbour: A Geological Journey” and the Combo video continue, albeit at a slower pace than previously but still encouraging. The Combo video comprises three of the Committee’s previous productions, these being The Appalachian Story, Offshore Oil and Natural Gas and The Recent Ice Age. Some of the footage in the Combo video has the potential to be used in the planned vignettes.

Plans are afoot to produce a teacher’s guide for the “Halifax Harbour” video, covering any expenses with the grant from the Canadian Geological Foundation. But since we are all volunteers, finding the time to do this is difficult.

The success of the AGS Video Committee over so many years reflects the commitment and hard work of its members: Jennifer Bates, Gordon Fader, Tim Fedak, Dave Frobel, Bob Grantham, Martha Grantham, Nelly Koziel, Bob Miller, Nancy Muzzatti, Patrick Potter, Anne-Marie Ryan, Phil Spencer and Graham Williams. Thank you for your continuing support and enthusiasm and for a new incentive to move forward.

Graham Williams

AGS PRODUCTS COMMITTEE

The Products Committee reviews, on behalf of council, proposals for funding of loans and grants requested of the Society that relates to the production of a physical entity. In the past year the following proposals were funded (total of $16,400):

Proposals funded last year (now completed):
1) Teachers workshop at GAC-MAC conference, May 2014, Fredericton ($1500)

Proposals submitted, and subsequently funded (now completed):
2) Geology of Nova Scotia Guidebook ($1000)
3) 6th Annual International UNESCO Conference on Global Geoparks ($3000)
4) GAC-MAC conference poster boards ($5000)

Newly funded this year
5) AUGC at UNB-F ($900)
6) Fossil Finders exhibit at Joggins Fossil Centre ($5000)

David Keighley
REPORT OF THE AGS AWARDS COMMITTEE FOR 2014

The AGS Awards Committee, comprising four members and chaired and reporting to the Vice-President, deliberated over nominations both for the Laing Ferguson Distinguished Service Award and for the Gesner Distinguished Scientist Medal. The results of voting were forwarded to Secretary Rob Raeside for corresponding inscription of awards; both awards will be presented at the annual colloquium this year. Members are thanked for their nominations and letters of support, as are the committee members for their thoughtful deliberations.

Respectfully Submitted,
John Calder, Chair (2014-15)

MEMBERSHIP REPORT, ATLANTIC GEOSCIENCE SOCIETY, 2015

Re: 2014 membership

At year end, the Atlantic Geoscience Society had 207 members in good standing. One member of Council was not in good standing.
The membership breakdown was as follows:
Lifetime: 2
Professional: 129 (academia 36, government 50, industry 30, retired / hobbyists 13)
Students: 76

A number of members paid dues twice last year; they attended the meeting and either mailed in dues or paid Nelly directly too; so they have been credited with pre-paying for 2015. In addition, a few prepay multiple years at one time. At year end 9 had pre-paid for 2015, and 3 for both 2015 and 2016. Members who have pre-paid for 2015 have been notified.

The number of members either mailing in dues or giving them directly to Nelly was 21. Rob was able to set up on-line payment using Pay-Pal in the spring and 8 paid dues online. The remainder paid dues when they registered for the Colloquium.

A general email has gone out to all 2014 members reminding them that:
a) it is renewal time,
b) to be elected to Council one must be in good standing, i.e. attend the meeting and pay dues as part of the registration fee, or submit dues by the meeting date, and outlining payment options.

I keep any forms received on file, and digital back-up, and hard copy spreadsheets of the membership database.

Respectfully submitted
Ann Miller
Membership Committee
The following activities kept the Publication Committee busy during 2014.

Reprinting of the NS Geological Highways Map
A contract was signed with Nimbus to print 2000 copies of the 2005 version of the map, which was out of print. The maps were printed in December, 2014. The retail price of the reprinted map is $7.95 and AGS will receive 10% royalty on all copies sold. AGS can also purchase copies of the maps from Nimbus for $2.50 each. AGS purchased 500 copies which are being sold at $6.95.

Four Billion Years and Counting
This long-awaited book was launched during a well-attended celebratory event hosted by Nimbus Publishing at the Maritime Museum of the Atlantic on November 5th. AGS members played a major role in making this book a reality – especially Rob Fensome and Graham Williams, to whom we are grateful. The Publication Committee made the decision for AGS to sell the English-language book for $35 (cover price is $39.95) and the French-language book for $45 (cover price is $49.95).

Fredericton 2014 Field Trip Guidebooks
It has been the practice for GAC-MAC to pass on the sale of field trip guidebooks after the meeting to the sponsoring organization as an on-going source of revenue. It has also been past-practice that all guidebooks for the meeting should go on sale, even if the trip was cancelled. Ten guidebooks were obtained from the authors, assigned an ISBN through Library and Archives Canada, and AGS publication numbers (40-49). A few copies of each guide are for sale at this meeting. We hope to soon be able to sell the pdfs (and the other AGS publications available in digital format) directly via the AGS PayPal.

Archiving AGS Publications
AGS publications have been archived through Dalhousie University in a collection called Atlantic Geoscience Society. The permanent URL for the collection is http://dalspace.library.dal.ca/handle/10222/50639.

Agreement with AAPG
An agreement was signed with AAPG to participate in the Datapages Archives, and it is anticipated that all the AGS publications will be online in their system by early summer, 2015. This work will be done at no charge to AGS, and we might even make a bit of money in royalties (depending on future demand for AGS publications).

Submitted by Sandra Barr (Committee Chair)
January 20, 2015
Volume 50 (2014) is complete and available on the website (http://journals.hil.unb.ca/index.php/AG). The volume contains the 50th anniversary editorial, 11 papers, and the AGS, Newfoundland GAC Section, and AUGC abstracts, as well as the abstracts from the 6th International UNESCO Conference on Global Geoparks. The total number of pages is 389, compared to v. 49, 204 pages, v. 48, 145 pages; v.47, 248 pages; v. 46, 205 pages; v. 45, 216 pages. Paper copies of the volume were printed for 24 subscribers who paid an extra fee to cover the cost. For v. 51 (2015), we already have 4 papers at the copy editing or layout stages, and 8 other papers in the review and revision process. Six of these manuscripts are for the thematic series on environmental geoscience, solicited by Mike Parsons, Gavin Kennedy, and Ian Spooner.

The on-line manuscript submission and reviewing process continues to be done using OJS (Open Journal System) software, managed by the Electronic Text Centre at the University of New Brunswick. The journal is a member of CrossRef, and as such, each paper as well as each set of abstracts, is assigned a unique identifier number known as a DOI. The journal is covered is in a large number of internet databases and abstract extraction services, including Current Contents, SCOPUS, and Georef.

The total number of institutional subscribers has decreased slightly (to 187 from 200). We benefit from our membership in the Erudit consortium, a Quebec-based journal aggregating group that provides journals to institutions (about 140 in total, of which 24 are in the USA and 3 are in other nations). According to Google Statistics, between January 1, 2014, and December 31, 2014, we had 20,664 visits to the journal website (up from 17,772 during 2013), of which 75% were separate individuals (i.e., some people visited more than once). The visitors were mostly from Canada, USA, and the UK, with others in the top 10 being India, France, Germany, Russia, China, Australia, and Trinidad & Tobago.

Our expenses increased in 2014, due in large part to increased costs related to publishing almost twice as many pages. Our income decreased due to a small drop in subscriber numbers and the fact that we have not yet received payments for the last part of 2014 from Erudit. Our total assets are currently $60,536 (see financial report from Chris White). It is emphasized that year-by-year income varies depending on when subscribers pay, and expenses vary depending on the number of pages published in the journal, but over time, income and expenses are stable (and income exceeds expenses).

Simon Haslett, co-editor since 2008, asked to be replaced, given his work load in other directions. We are grateful for the help that Simon has given us, especially in the area of Quaternary geology, coastal erosion, glacial geology, etc. The co-editors were unanimous in asking AGS Council to approve the appointment of Chantel Nixon (NSDNR) to replace Simon for an initial 3-year term (Feb. 1, 2015- Jan. 31, 2018). Alexander Lugar asked to be replaced as layout person due to the increased workload of his fulltime job. We were able to obtain the help of two part-time layout persons, as the workload has been enough for two people. They are Leann Grosvold (Fall River NS) and Laura Trudell (Vancouver BC).

The editors continue to be grateful to Chris White for his outstanding work as Production and Financial Manager. We thank the associate editors and other reviewers of manuscripts for their help, without which we would not have a high quality journal. Reviewers’ names are acknowledged on the website unless anonymity was requested. Associate editors’ names are also listed on the journal website. 2014 marked 50 years of continuous publication of the journal – a remarkable record. We thank the authors who have supported and continue to support the journal by submitting papers. As always, we welcome your manuscript submissions (but not too many – the first time we have ever said that!).

Respectfully submitted by:

Sandra Barr, Rob Fensome, Simon Haslett, and David West (co-editors, Atlantic Geology)

January 20, 2015

The 2014 Colloquium took place in Wolfville. Past experience taught me that we never get media attention in Wolfville other than the journalist of the Annapolis Valley regional paper (the Advertiser/Register), who came two previous times to our Wolfville Colloquium. Hence, in a different take on AGS publicity, John Calder and I hosted a session on Nova Scotia's Geoheritage list in the building of the Wolfville Farmer's market on the Thursday evening preceding the Colloquium. About 18 people came, including said journalist (Wendy Elliott), who wrote a nice piece in the Advertiser which I include here. It was an inspiring event and it cost AGS $50.- (rental fee for the space). John gave away one of his Joggins books – the recipient was a lucky teenager from Port Williams.
I was able to attend the 4th International Geoparks Conference in Saint John as a Joggins Fossil Institute board member. After I found out that I was going to this meeting, I suggested to AGS council that I could, as AGS past president, welcome delegates to the meeting and give 5 copies of ‘The Last Billion Years’ to relevant VIPs, if the organizing committee would let us. Council agreed. I then approached the Geoparks Conference organizers and they welcomed this suggestion enthusiastically. They selected the 5 lucky recipients and gave me a really good time slot in the general opening session. The 5 recipients were (from left to right in the picture): Dr. Patrick McKeever, head of the UNESCO/IGP office, JeanPaul Blackburn, Canadian ambassador to UNESCO, Dr. Suzette Kimball, director of the US Geological Survey, Nicholas Zouros, chair of the European Geopark Network and Andrew Logan, chair of the local organizing committee.

Elisabeth Kosters

ATLANTIC GEOSCIENCE SOCIETY WEBMASTER REPORT 2014

During the period of January 1, 2014 to January 08, 2015, there had been 2,634 visits by 1,770 unique visitors, to the AGS website. Out of this total 64.2% are new visitors. A breakdown of the visitors is: Canada (2098), USA (228), China (34), India (32), UK (27), Germany (23), France (20), Indonesia (14), Japan (13), and Turkey (12). The highest volume was during the periods of early January to mid-February and 2 days in mid-December, leading up to the Colloquia. The average time spent on the site homepage is 1 minute and 48 seconds which reflects the fact that the AGS home page is the jump in point to our site information and it also has links to outside websites, such as those set up for this Colloquium. Changes to the website include: the addition of the “In Memoriam” page where obituaries for fellow Geoscientists that have passed are posted; modifications to the “AGS Awards” page that now contains links to the “citations” for the Gesner Medal winners; and most recently the “Atlantic Geology” page that promotes the table of contents for the more recent volumes (still under expansion). Links to these pages are found on the navigation menu located on the left side of most of the site web pages. Routine updates to information presented on the homepage and other pages are made as requested by the executive.

Joe MacIntosh, Webmaster, Atlantic Geoscience Society, January 30, 2015
AGS Speaker Series: Report

Purpose: to provide geoscience information to the public and highlight the activities of the Atlantic Geoscience Society.

Concept:
- 1 speaker (start with AGS members as speakers – AGS Presidents?) / year
- 2-3 locations/year
- Potentially team up with local naturalist/hobby groups to help host and promote the event
- Create AGS promotion slide for talks

Report:
A precursor to the Colloquium, the first Speaker Series talk will be held on January 29, 2015 at Mount Allison University with the support of the MTA Department of Geography and Environment. Cliff Stanley (AGS President) will speak on arsenic contamination in groundwater and John Calder, as the next AGS President, will introduce him.

This talk has been advertised through: a newspaper advertisement in the local paper (The Times and Transcript), running for 2 weeks prior to the talk; AGS website updates and Twitter postings; posters in local businesses and around campus; postings on the events calendar for both MTA and the Sackville Community Calendar; and JFI Facebook postings.

Future:
- Cliff will give 1-2 more talks in the Spring. Potential locations: Wolfville and Annapolis Royal
- The next speaker will be John Calder, to start in the summer or early Fall. Potential locations: Halifax, PEI, 1 other to be determined
- Melissa Grey will step down as the series organizer (and AGS Council member) and Tim Fedak (new Council member) as agreed to take on these duties
NOMINATION OF OFFICERS AND COUNCILLORS

Nominations for AGS Council
The following individuals have agreed to be nominated as new members or agreed to continue to serve on council subject to ratification by the AGS membership.

President John Calder, NS DNR
Past President Cliff Stanley, Acadia
Vice-President Robert Grantham
Treasurer Calvin Campbell, Nelly Koziel, GSC (Atlantic)
Secretary Rob Raeside, Acadia
Councillor *Tim Fedak, Fundy Geological Museum
Councillor *Alison Malcolm, Memorial University
Councillor Andrew McRae, St. Mary’s
Councillor Ann Miller, Wolfville
Councillor Colin Padjet, UNB-F
Councillor *Shaun Rhyno, CNSOPB
Councillor Kay Thorne, NB DEM, Fredericton
Councillor *Ann Timmermans, UNB-F
Councillor Deanne van Rooyen, CBU
Councillor Grant Wach, Dalhousie
Councillor Jim Walker, NB DEM
Councillor Sheila Watters, Apohaqui
Councillor Chris White, NS DNR
Councillor Mike Young, Dalhousie
Councillor ______________, – graduate student
Councillor ______________, St. Mary’s – undergraduate student

* new member on Council

Completion of term:
Mark Deptuck, CNSOPB
Melissa Grey, Joggins Fossil Centre
Jacob Hanley, St. Mary’s
Chris McFarlane, UNB-F
Randy Miller, New Brunswick Museum
Hamish Sandeman, NL DNR
Renee Delisle, Acadia University – graduate student